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Abstract

Sequential learning for classification tasks is an effec-
tive tool in the machine learning community. In sequen-
tial learning settings, algorithms sometimes make incor-
rect predictions on data that were correctly classified in
the past. This paper explicitly deals with such inconsis-
tent prediction behavior. Our main contributions are 1)
to experimentally show its effect for user utilities as a
human cognitive bias, 2) to formalize a new framework
by internalizing this bias into the optimization problem,
3) to develop new algorithms without memorization of
the past prediction history, and 4) to show some theoret-
ical guarantees of our derived algorithm for both online
and stochastic learning settings. Our experimental re-
sults show the superiority of the derived algorithm for
problems involving human cognition.

1 Introduction

Online learning and stochastic learning are advantageous for
large-scale learning. Sequential processing of data is the key
of these methods. For classification tasks, these learning al-
gorithms process a bunch of data one by one and change
its classification rule at every round. We call these methods
sequential learning in this paper.

Sequential learning algorithms sometimes make wrong
predictions on data that were correctly classified in the past.
While classical performance evaluation measures for se-
quential learning, such as the expected loss, do not reflect
the history of the past prediction results, previous algo-
rithms have not considered this inconsistent behavior as a
crucial factor. The key statement in this paper is that this
phenomenon has a crucial impact on the evaluation of algo-
rithms on the condition that humans are evaluators. Humans
have a cognitive bias that they attach a higher value to the
data that were correctly classified in the past than the other
data. This effect originates from the endowment effect that
had been widely analyzed in the field of behavior economics.
There are motivating examples in which this cognitive bias
has important roles:

o User utility maximization: Sequential learning has been

used in many services such as image object recogni-
tion and email filtering (Aberdeen, Pacovsky, and Slater
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2010). Many users continuously utilize services whose
prediction rules have been changed over time. Further-
more, some users check prediction results of previously
seen data. Negative flips may drastically decrease the util-
ities of these users.

e Interactive annotation: There are many human-
computer interaction systems based on sequential
learning such as active learning-based annotations (Set-
tles 2011). Encouraging people to make annotations is
crucial for more data generation and better performance.
Some annotators may feel frustrated annotating the data
correctly classified in the past as wrong ones.

To maximize the availability of machine learning, algo-
rithms which interact with humans need to adjust update
rules to heal the bias derived from the past prediction history.
We explicitly deal with this cost as the divestiture loss. We
first conducted an experiment to verify whether the endow-
ment effect negatively affects human’s evaluations. Next, we
set new evaluation measures for sequential learning by in-
corporating the endowment loss. This measure imposes an
additional objective on sequential learning, minimizing the
divestiture loss. We note that this new problem setting can be
easily dealt with if algorithms could store all previous exam-
ples and its prediction results in the memory; however, this
memorization is unpractical for large-scale learning setting
due to the memory constraint. To solve this problem, we de-
rived new variants of Online Gradient Descent (OGD). Our
derived algorithms enable to retain reasonable convergence
guarantees for both online learning and stochastic learning
settings without data memorization. We lastly conducted ex-
periments and the results showed advantages of our algo-
rithm compared with the conventional ones in the sequential
learning framework with a human cognitive bias.

1.1 Notations

Scalars are denoted by lower-case x and vectors are denoted
by bold lower-case x. ¢-th training input vectors and labels
are denoted x; and y,. Input vectors are n-dimensional and
taken from the input space X C R”. Output labels are
taken from the output space ). For simplicity, we define
2zt = (X¢,y:) to describe t-th datum. x,.; describes a se-
quence of vectors from s-th to ¢-th and x7. is a empty set.
14— is a boolean function which becomes 1 only if a = b.



Algorithm 1 Sequential learning framework

Initialize wi = 0 € R", the size of data : T’
fort=1,...,Tdo

Receive x; € X

Predict corresponding output §; = sgn((wy, X))

Unveil true output y; € {—1,1}

Incur loss £(wy; 2¢)

Update weight vector and obtain w;; € W
end for

2 Sequential Learning

Let us begin by outlining a general sequential learning set-
ting for binary classification tasks, that is, Y = {—1,1}.
Furthermore, we focus on linear prediction models in this
paper. In this setting, the prediction is performed through
the sign of the inner product of w and x, that is, § =
sgn({w, x)). The basic iterative procedure is as follows:

1. Atround ¢, receive an input vector x;.

2. Predict the corresponding output §; € {—1,1} through
the current weight vector wy.

3. The true label, y; € {—1,1}, is revealed and incur a cost
through the loss function ¢(wy; z;). Loss functions mea-
sure the predictability of the weight vector for a specific
datum.

4. Update the weight vector to w1 in the convex set W C
R™ according to the prediction result.

5. Increment the round number ¢. The used datum cannot be
accessed in the following procedure. Repeat this process
until no labeled data remains.

Algorithm 1 summarizes this general framework.

As famous examples of the sequential learning frame-
work, online learning and stochastic learning have recently
gained attentions due to its memory efficiency, easiness to
re-learning, and adaptation to streaming data.

2.1 Online Learning

Online learning has a great advantage for large-scale data
processing. Although the data loading time becomes the
dominant factor in the batch learning framework on a large-
scale data due to memory constraints (Yu et al. 2012), online
learning algorithms can run with a limited memory space.
Standard online learning algorithms do not assume any dis-
tribution on the data. This framework can be applied un-
der not only an i.i.d. assumption but also an adversarial one
wherein an adversary assign a label after algorithms estimate
it. As a novel performance measure, the regret is well used.
For any u € W and any sequence z;.7, regret is defined as:

T T
Regret(T') = Zé(wt; zt) — Zﬁ(u; 2t) - (D
t=1 t=1

The regret is formalized as the difference between two
terms; 1) the cumulative loss incurred by the algorithm and
2) the one produced by the fixed optimal weight vector.
While no assumption is put on the sequence, it can be mea-
sured even in an adversarial setting. If the upper bound of

regret is sublinear (o(T")), the loss per datum becomes the
same as the one of the best fixed strategy.

2.2 Stochastic Learning

In the standard stochastic learning setting, the final goal is
the minimization of the expected loss. Let us assume that
a certain data distribution D exists and a sequence of data
z1.7 is i..d. sampled from this distribution. The objective
function is the difference between the expected loss evalu-
ated at the final output of the algorithm and the optimal one.
For any u € W,

B [6(w; 2)] = B [0(u; 2)] - @)

If the value of this function converges to 0, the algorithm
will minimize the expected loss as the best fixed strategy do.

2.3 Online (Stochastic) Gradient Descent

Online gradient descent (OGD)! is a simple algorithm for
sequential learning. OGD is an iterative algorithm and uses
only one datum in each round. OGD updates the weight vec-
tor for the reverse direction of the gradient. Therefore, OGD
works with any differentiable loss function. The update for-
mula is

wip1 = Iy (wy — 0 VE(W; 24)) 3)

V/{(wy; z:) means the gradient of the loss function with re-
spect to a weight vector w; evaluated at z;. ITyy(+) is a pro-
jection function onto a convex set W such that ITyy(w) =
arg ming, ¢y ||w — w’[|2. We can see from this update for-
mula that the weight vector is projected onto WV if it moves
to the outside of V. n;.1 is a sequence of positive learning
rates. The weight vector is continuously updated according
to formula (3) whenever OGD receives new one datum.

OGD uses a first-order approximation of loss functions
to update the weight vector for the sake of faster calcu-
lation. Therefore, OGD is well used when computational
constraints are crucial concerns. OGD has been experimen-
tally shown to have good performances even if its theoreti-
cal properties are worse than other algorithms (Bottou and
Bousquet 2011). OGD has been the topic of extensive theo-
retical analysis. OGD obtains a sublinear regret upper bound
under practical constraints.

Theorem 1. (Zinkevich 2003) Let w1.71 be derived ac-
cording to OGD’s update formula (3). Assume that for all
w €W, |wll2 < R and for all t, |Vl(wy; z)|2 < G.
When 1; = /2R /G\/1, the upper regret bound is

Regret(T) < 2vV2RGVT = O(VT) . 4)

From this result, we see that OGD is guaranteed to con-
verge to obtain the optimal average loss. If 7" is known in
advance, OGD can achieve a tighter bound by setting an
appropriate fixed learning rate. When the loss function is

'In a stochastic learning setting, this algorithm is called stochas-
tic gradient descent (SGD). Though these two algorithms have dis-
tinct objectives, the skeleton of their update procedures is almost
the same. We use the term OGD for describing both types of algo-
rithms if there is no explicit statement.



strongly convex, OGD converges to the optimal solution in
O(log T') (Hazan, Agarwal, and Kale 2007; Shalev-Shwartz
and Kakade 2008).

When OGD is used in a stochastic optimization setting,
the average weight vector is guaranteed to converge to the
optimal weight vector. We define D! as a sequence of labeled
data z1.; i.i.d. sampled from a distribution D and define an

average weight vector as w = Zthl w;/T.

Theorem 2. (Cesa-Bianchi, Conconi, and Gentile 2004) As-
sume that the conditions in Theorem 1 are satisfied. If loss
functions are convex, for any u € W,

Epr [E.np [((W; 2)]] — Eznp [((u; 2)]
- 2V2RG
S =77

The convergence rate is O(1/+/T) and OGD is guaran-
teed to converge to the optimal weight vector.

&)

3 Sequential learning with a cognitive bias

From the nature of sequential update, algorithms sometimes
make mistakes on the data that were correctly classified in
the past. We first show that this event largely affects user
utilities neglected in the context of the standard sequential
learning setting. Next, we propose a new objective taking in
this human cognitive bias. The endowment effect is a key
component to analyze this bias.

3.1 Endowment Effect

The endowment effect (Thaler 1980) induces in humans a
cognitive bias to prevent rational decision-making. The en-
dowment effect states that people tend to put a higher value
on preventing the loss of an item they already possess than
on buying the same item they does not possess. This human
psychological bias has an important role for utility max-
imization and human engagements. There are many work
on theoretical explanations and experimental tests of the en-
dowment effect (Kahneman, Knetsch, and Thaler 1990).

The endowment effect suggests that the cost of compen-
sation is larger than the cost of paying. Here, the notion of
the endowment effect is that people would pay more in order
to sustain the correct prediction result for past data than to
pay for a correct prediction on new data. As a result, the se-
quential learner must take the data received in the past into
consideration when updating the model. This notion should
be incorporated into the objective as an additional cost.

3.2 [Experiment on the endowment effect

Here, we describe an experiment and results demonstrating
that the endowment effect is prominent in the user utilities.
We conducted a subjective experiment using a crowdsourc-
ing market place to assign tasks to humans. We set up a syn-
thetic scene recognition task as a binary classification prob-
lem using indoor recognition datasets”. We used pictures of
bookstores and restaurants from this large dataset.

Zhttp://web.mit.edu/torralba/www/indoor.html

Table 1: Experimental result on the endowment effect. The
table shows the number of people who evaluate each ses-
sion’s predictability.

1 2 3 4 5 | Average
type-1 2 3 15 73 17 3.80
type-II (duplicate) | 2 11 26 54 7 3.53

We assigned a certain amount of tasks to each worker.
Each session consisted of two phases, training phase and
evaluation phase. In the training phase, workers received
eight pairs of a picture and its predicted label. After seeing
the given pairs, workers checked whether each label was cor-
rect and then sent their answers to the system as user feed-
back. In the evaluation phase, the system showed eight dif-
ferent pairs of a picture and its prediction result to workers.
Workers were told that the previous user feedback was used
to classify samples in the evaluation phase. Workers evalu-
ated the learnability of this system on a five-star scale.

Each worker dealt with two types of sessions. In the type-
I, the same picture did not appear in both the training and
evaluation phases. Therefore, the endowment effect was not
activated in this session. In the type-II, two pictures were re-
displayed in the evaluation phase. These pictures were cor-
rectly classified in the training phase but misclassified in the
evaluation phase. The number of correctly classified pictures
in both phases was fixed; there were four correctly classi-
fied pictures in both phases. Therefore, if worker evalua-
tions were largely different between two sessions, we can
see that the endowment effect influenced workers’ evalua-
tions. In each session, 100 workers evaluated its learnability
and verified whether there is any difference of workers’ cog-
nition between these two types or not.

Table 1 shows an experimental result. The result in the
table indicates that the type-II sessions have a lower evalu-
ation in comparison with the type-I. The p-value calculated
by Mann-Whitney test is less than a 1% level of significance
(p = 0.0093). This result shows that the endowment effect
largely affects workers’ evaluations.

3.3 Sequential learning and the endowment effect

We define this negative side-effect as a divestiture loss. The
divestiture loss is actualized when the classifier makes an
inaccurate prediction but it correctly classifies the same data
in the past. To internalize this loss explicitly, we integrate
this loss into the optimization problem. When an algorithm
already processed S data (z71.5) and predicted labels for them
(11:5), the divestiture loss is defines as:

C(W; z, 915, ZI:S) = ]-prev"r/g(W; Z)

S
where 1,y = min (12 1z_z51ys_gs> . (6
s=1

~ is a non-negative trade-off parameter between the original
objective and the divestiture loss. «y is chosen according to
the stakeholder’s preference. If v = 0, the divestiture loss
disappears and the objective function becomes the conven-
tional one. 1y, indicates whether the algorithm correctly
classified z in the past. When it correctly classified, 1,y be-
comes 1 and the algorithm incur an additional loss v¢(w; z)



from this function. Otherwise, 1,y becomes 0 and this loss
will not be activated. We assume that if we correctly classify
the same datum more than once, the divestiture loss does
not change. New objective functions consist of the sum of
the original losses and the divestiture loss. A new regret is
defined as follows; For any u € W,

T T
Regret(T') = Z Fy(wy) — Z Fi(u)
t=1 t=1
where Ft(w) - E(W7 Zt) + C(W, Zt, gl:t—la Zl:t—l) ) (7)
and for any u € W, a new expected loss is
Epr [E.np [G(W; 2)]] = Epr [Exnp [G(u; 2)]]

1 T
s.L. G(W, Z) = E(W7 Z) + ? t:Zl C(W7 2 yl:t—l; Zl:t—l) .
(8)
4 Endowment-induced OGD

In the sequential learning setting with a human cognitive
bias, the original OGD does not achieve a good experimental
result because of the existence of divestiture loss. Although
the divestiture loss appears only when the corresponding ex-
amples were correctly classified, the original OGD treats all
examples the same without referring to on-the-fly prediction
results. The original OGD cannot capture this skewness.
We devised the Endowment-induced Online Gradient De-
scent (E-OGD) to incorporate the notion of the endowment
effect into the original OGD. The key idea is to heavily
weight correct examples in order to absorb the skewness.
E-OGD divides all examples into two categories:
1. correctly classified examples, i.e., §; = ¥+
2. wrongly classified examples, i.e., §; # ¢
We see that the loss corresponding to the former examples
is bigger than that of the latter examples due to the divesti-
ture loss. Therefore, correct examples should be treated as
being more important than wrong ones. E-OGD first clas-
sifies each example into one of two types it should belong
to. After the type identification, E-OGD updates parameters
heavily with the trade-off parameter v with respect to cor-
rectly classified examples. In summary, the weight vector is
updated as follows:

w1 = Iy (W — 10, VE(Wy; 2))

c(L+7)/Vt if g =y

where 7, {c/\ﬁ i £ )

Algorithm 2 is the pseudo-code of E-OGD. We note that

this E-OGD can update parameter by using only the cur-

rently received datum. We show that an appropriate step

width setting makes the algorithm adaptive to the endow-
ment effect in the following theoretical analysis.

4.1 Theoretical Analysis of E-OGD

Let us analyze the theoretical aspects of E-OGD. For simpli-
fying the following discussions, we introduce a new term:

t—1
r¢(z) = 1+~ min (12 L—., 1y:y> : (10)
s=1

Algorithm 2 Endowment-induced Online Gradient Descent

Require: scaling constant ¢, trade-off parameter ~y
Initialize w; = 0
fort=1,...,7Tdo
Receive x;
Predict corresponding output § = sgn ((wy, X))
Unveil true output y;
if Yt — :l}t then
Vitl = Wy — C(l + W)Vﬂ(wt, Zt)/\/i
else
Vit = W — CV((Wt; Zt)/\/i
end if
Wi = argmin ||[w — v |2
wew

end for

and denote r;(z;) as r; and £(-; z;) as ¢;(-). We analyze the
upper regret bound and the upper bound of the expected loss
of E-OGD in this section. All proofs of theorems and lem-
mas are written in the Appendix. Furthermore, we indicate
another option of step widths and its theoretical analysis in
the Appendix.

First, we show relationship between a sequence of step
widths in E-OGD and the endowment effect. We set a se-
quence of step widths as:

:{C(l‘*"Y)/\/E if gr =yt
"= eV if 9o # s

where c is some positive constant. Regret (7) is rewritten as:

(1)

T T
Regret(T) = Y " rily(wy) — min > rly(u) . (12)
t=1 ue t=1

The next theorem gives the regret upper bound of E-OGD.

Theorem 3. Let wy, ..., W be derived according to E-
OGD’s update rule. Assume that for all wy, |wells < R,
IVl (we)ll2 < G. When we set a sequence of step widths
m.7 and assume the condition as in Lemma 3, the upper
bound of regret is obtained by setting c = /2R/G(1 + v)
as follows:

Regret(T) < 2v2RG(1 +4)VT . (13)

From this theorem, E-OGD is guaranteed to converge to
obtain the optimal average loss with respect to the online
learning setting with a human cognitive bias.

For stochastic learning setting, we assume that the data
is i.i.d. sampled from a distribution D. The final goal is to
minimize the sum of the expected loss and divestiture loss,
as described by formula (8). Lemma 1 reformulates the op-
timization problem into an easily analyzable form.

Lemma 1. The optimization problem in the stochastic
learning setting can be reformulated through r(z).

1
T Z re(2)0(w; z)] ] . (14)

t=1

Epr |E..p




Furthermore, it can be reformulated through a new distri-
bution Dp and an appropriate constant value Hpr condi-
tioned on z1.7 as

E'DT [H’DTEZNDP [E(W, Z)]] . (15)

The following theorem is derived from Theorem 3 and
Lemma 1 in order to upper bound the expected loss with a
human cognitive bias (8).

Theorem 4. Assume that the conditions in Theorem 3 are
satisfied and there is an integer t,, such that r(z) = 1¢,(2)

foranyt > t,. In this setting, the following formula is satis-
fied for any u € W.

Epr [E.np, [((W;2)]] = Epr [E.pp [((u; 2)]]
- V2RG(1 +7)
T (VT =t +)/VT)/2 =/t = 1/VT)

where W = ZtT:t,, wy/(T —t, + 1).

Lemma 1 derives that the left-hand side of the formula
(16) equals the original objective function (8). From this the-
oretical result, the average weight vector converges to the
optimal one that minimizes the sum of the expected loss and
the divestiture loss. If ¢, < T, the convergence speed is

O(1/V/T). And, when the number of data is finite, there is
some constant t,, such that ;(z) = r; (z) forany ¢t > ¢,,.

(16)

4.2 Importance-aware Update

When E-OGD receives a correctly classified example, the
weight vector is updated by 1 + ~ scaling. This update can
be viewed as an approximate update of the original OGD at
14~ times. An importance-aware update can be established
in order to make an exact 1 4+ ~ times update through an
one-time update (Karampatziakis and Langford 2011).

The original OGD and E-OGD do not hold some impor-
tant properties such as invariance and safety. The invariance
property guarantees that the parameter updates per example
with an importance weight h should be the same as regu-
lar updates that appear h times in a row. The safety prop-
erty guarantees that the magnitude relationship between ¢
and y does not change by the update using the received da-
tum. When the endowment effect is strong (r is large), the
plain E-OGD might overshoot when the prediction is cor-
rect because the step width becomes large. The safety prop-
erty guarantees to prevent this type of overshooting. The
importance-aware update framework provides a closed-form
update formula for calculating the weight vector by solving
an ordinary differential equation. The weight vector can be
updated with one closed-form formula for many major con-
vex loss functions such as the hinge-loss and logistic loss.
Besides the importance-aware update framework, there are
other methods for obtaining invariance, such as rejection
sampling (Zadrozny, Langford, and Abe 2003).

5 Experiments
We conducted experiments to test the performance of the
conventional OGD and E-OGD in the online learning frame-
work with a human cognitive bias. We used five large-scale

Table 2: Dataset Specifications. 7" is the number of training
data. S is test data size. NV is the number of features.

T S N

news20 15,000 4,996 1,335,191
revi 20,242 677,399 47,236
algebra 8,407,752 510,302 20,216,830
BtA 19,264,097 748,401 29,890,095
webspam-t 315,000 35,000 16,609,143

data sets from the LIBSVM binary data collections®. The
specifications of these dataset are listed in Table 2. news20
and rcv1 are news category classification tasks. algebra and
BtA (Bridge to Algebra) are KDD Cup 2010 datasets to pre-
dict whether students correctly answer algebra problems.
webspam-t is a tri-gram webspam classification dataset
used in the Pascal Large Scale Learning Challenge. The
original webspam-t dataset is not splited to two sets, there-
fore, we randomly sample 90% data from the dataset and
used them as a training set and remaining data as a test set.

We used these datasets to compare the performances of
OGD and E-OGD in a new stochastic learning setting. We
incur both expected loss and divestiture loss. To evaluate the
divestiture loss, we replaced some examples in the test data
with some training examples at a specific rate. The training
examples are randomly extracted from the training set. If
the algorithm correctly classified in the training phase but it
misclassified the same example in the test phase, they incur
a divestiture loss. We conducted experiments by setting the
replacement rate of the test examples by training examples
as 5, 10, and 30%. We quantified the performance as

s

1

g g L(w; zs)—i—% E Uw; zp) a7
s=1

zpEP

The first term corresponds to the expected loss, and each da-
tum 24 corresponds to one datum in the test set or a replaced
training example. S is the number of test data. The second
term corresponds to the divestiture loss, and each datum z,
corresponds to the example regarding the divestiture loss. P
is an example set that satisfies two conditions: (1) the exam-
ple was extracted from the training dataset in exchange for
test examples; (2) the example was correctly classified when
the example appeared in the training phase. The cumulative
loss is defined as the sum of these two losses.

Let the weight vector spaces YV be a IN-dimensional Eu-
clidean space where NV is the number of features. We used
logistic loss as a loss function. Each algorithm learned the
weight vector from training set through 1 iteration. Learning
rates are 1; = 1/+/t. We varied 7 from 10° to 1.91 x 1073
with common ratio 1/2 to minimize cumulative loss.

In addition to the normal setting, we performed several
experiments. We show a brief result here. First, we verified
that E-OGD outperformed OGD in most datasets when we
set the hinge-loss as a loss function. Next, we made the value
of v bigger and verified that E-OGD has maintained an ad-
vantage over OGD. These results indicate that the advantage

*http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html



Table 3: Experimental results compared to the conventional OGD: the expected loss, divestiture loss, and cumulative loss
(Iteration: 1). The lowest values in each replace rate r, loss type, and dataset are written in bold.

r = 0.05 r=20.1 r=20.3

Loss Type E-OGD OGD E-OGD OGD E-OGD OGD
Expected || 510 x 102 531x 1072 567x10 2 584x102 9.18x10 2 9.32x 1072
news20 Divestiture || 8.71 x107% 1.39x1072 7.73x1073 127x1072 6.71x107% 1.07x 1072
Cumulative || 5.97 x 1072  6.70x 1072 6.44x1072 7.11x1072 9.85x10"2 1.04 x 107!
Expected 739x 1077 737x10° % 7.83x10 2 780x10 % 971x10? 9.65x 10 2
revi Divestiture || 1.10 x 1072  1.84x 1072 1.04x1072 1.74x1072 8.04x10"% 1.35x 1072
Cumulative || 8.49 x 1072 921 x1072 887x1072 954x1072 1.05x10"' 1.10x 107!
Expected 331x10°T 306x10 ' 330x10 T 306x10 ' 326x10 ' 3.03x10 *
algebra Divestiture || 6.00 x 1072 1.01 x 107! 568 x 1072 960 x 1072 441 x 1072 7.46 x 1072
Cumulative || 3.91 x 1071  4.08 x 107! 387 x107' 4.02x10"! 3.70x10"' 3.78x 107!
Expected 329x 1077 311x10 % 327x10 T 310x10 ' 3.18x10 T 3.03x10 ®
BtA Divestiture || 7.64 x 1072 1.17x 107! 7.24x1072 1.11x107! 5.63x1072 8.62x 1072
Cumulative || 4.05 x 1071 428 x 107! 399 x 107! 421x107' 374x10"' 3.90x 107!
Expected || 3.45x 10 2 351x10 7 349x10 2 353x10 2 375x10 2 3.76x 10 °
webspam-t | Divestiture || 8.11 x 1072  1.09x 1072 7.72x10"% 1.04x107? 563x10"% 7.73x1073
Cumulative || 4.29 x 1072 4.60x 1072 4.26x1072 457x1072 4.32x1072 4.54x 1072

of E-OGD becomes more crucial as the importance of di-
vestiture loss becomes larger.

5.1 Experimental Results

Table 3 shows the experimental results when we apply OGD
and E-OGD to five datasets. These results indicate E-OGD
has a crucial advantage to make divestiture losses lower
in all settings, and this effect contributes to low cumula-
tive losses. As a result, E-OGD outperforms OGD on all
datasets. Figure 1 plots loss values in each 10,000 rounds
when we used BtA dataset to evaluate the performance.
These results denote that E-OGD has obtained significantly
lower divestiture losses than OGD during most rounds. Low
divestiture loss leads to low cumulative loss, and E-OGD has
constantly outperformed OGD with respect to cumulative
loss. The difference of expected losses between two algo-
rithms becomes smaller while the number of received data
increases. On the other hand, the difference of divestiture
losses between two algorithms becomes bigger. This result
means that E-OGD becomes superior to the normal OGD
with respect to the cumulative loss while the data increases.

Table 4 shows the results of importance-aware update
versions. These results indicate that the importance-aware
update improves the performance of E-OGD in most ex-
perimental settings. Moreover, E-OGD largely outperforms
OGD in terms of cumulative losses.

6 Related Work

Researchers have developed many online and stochastic
learning algorithms as a natural response to the desires of
large-scale learning systems (Shalev-Shwartz 2012). Many
algorithms pursue to minimize the regret upper bound or the
expected loss by using convex (surrogate) loss functions as
a major objective. Follow-The-Regularized Leader (FTRL)
(Shalev-Shwartz and Singer 2007) is a fundamental tem-
plate for online convex optimization. Theoretically speak-
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Figure 1: Experimental results on BtA dataset in each 1,000
rounds: the expected loss, divestiture loss, and cumulative
loss. The z-axis is the number of rounds. The y-axis denotes
the value of each loss. The solid curves are the results ob-
tained by E-OGD. The dotted curves are the results by OGD.

ing, FTRL has desirable properties, including a tighter regret
bound. A number of cutting-edge algorithms have been de-
rived from FTRL; OGD is one of famous examples. FTRL
has been extended to enable it to deal with other problem
structures besides online and stochastic learning frameworks
(Duchi et al. 2010; Xiao 2010; McMahan 2011). These
frameworks enable sparsity-inducing regularization to be in-
tegrated into FTRL while preserving the advantages of se-
quential learning. They derived the sublinear regret upper
bound and the convergence property to the optimal point in
the stochastic learning setting. The extension to regularized
objectives is one of our future research directions.

Our framework is similar to the cost-sensitive learning
framework wherein the loss of false positives is different
from the loss of false negatives. Langford and Beygelzimer
(2005) provides a reduction technique that works for clas-



Table 4: Experimental results among importance-aware update family: the expected loss, divestiture loss, and cumulative loss
(Iteration: 1). The lowest value in each replace rate r, loss type, and dataset are written in bold.

r = 0.05 r=20.1 r=20.3

Loss Type E-OGD 0OGD E-OGD 0OGD E-OGD OGD
Expected || 3.11x10 2 385x10 7 340x10 2 414x10? 520x10 2 586x 10
news20 Divestiture || 1.37 x 1072 220x 1072 1.31x1072 208x1072 9.84x1073% 1.59x 1072
Cumulative || 4.48 x 1072  6.05x 1072 470x1072 622x1072 6.18x1072 7.46x 1072
Expected || 3.53 x 1072 3.80x102 395x10°2 418x1072 5.69x10°2 579 x 1072
rcvi Divestiture || 1.25 x 1072 1.78 x 1072 1.18 x1072 1.68x1072 9.10x107% 1.30x 1072
Cumulative || 4.79 x 1072 558 x 1072 5.13x1072 587x1072 6.60x10"2 7.09 x 1072
Expected 335x 1077 313x10° " 334x10 " 313x10 ' 330x10° " 3.09x10 '
algebra Divestiture || 5.89 x 1072 1.02x 107" 558 x1072 968x107? 4.33x107% 7.52x 1072
Cumulative || 3.94 x 1071 416 x 107" 3.90x107' 4.09x10"! 3.73x10"' 3.85x 107!
Expected 329x 1077 311x10 % 327x10 T 310x10 ' 3.18x10 ' 3.03x10 '
BtA Divestiture || 7.64 x 1072 1.17x 107! 7.24x1072 1.11x107' 5.62x10"2 8.61 x 1072
Cumulative || 4.05 x 1071 428 x 107! 3.99x 1071 421x107! 374x10"! 389x107!
Expected || 2.62x 10 2 275x10 7 261x10 2 274x10 2 279x10 2 290x 10 2
webspam-t | Divestiture || 8.29 x 107  1.16 x 1072 7.94x1073% 1.11x107? 5.87x10"% 830x107*
Cumulative || 3.45 x 1072 391 x 1072 3.40x1072 385x1072 3.38x10°2 3.73x 1072

sification ranging from cost-sensitive to simple binary and
Wang, Zhao, and Hoi (2012) proposes a cost-sensitive on-
line classification framework. In our framework, the cost of
each example dynamically changes depending on the history
of prediction results. Therefore, the problem becomes more
complicated than these cost-sensitive frameworks.

7 Conclusion and Open Problems

We established an online and stochastic learning frame-
work with a human cognitive bias by incorporating the no-
tion of the endowment effect. We established an online and
stochastic learning framework with a human cognitive bias
by incorporating the notion of the endowment effect. In this
framework, algorithms need to focus on minimizing not only
the original loss but also the divestiture loss. We developed
new algorithms applicable to this framework; Endowment-
induced Online Gradient Descent (E-OGD). We theoreti-
cally showed that E-OGD is guaranteed to have some de-
sirable properties for both online and stochastic learning
frameworks with a human cognitive bias. Finally, we exper-
imentally showed that our derived algorithms are effective
at a large number of tasks involving human engagements in
this framework.

The sequential learning framework with a human cogni-
tive bias has several open issues. The first challenge is a
more sophisticated choice of 7,. To obtain the lowest con-
vergence rate, it is the best to set 7, as proportional to 74 (z;).
However, exact matching is almost impossible because the
parameter 7;(2;) is conditioned on a sequence of previous
predictions. In the standard sequential learning setting, al-
gorithms cannot preserve the history of observations and its
prediction results.

The second issue is the similarity of data. When we use
the machine learning algorithm, sometimes we encounter
situations in which several data are similar to but not exactly
the same as previously seen data. We will verify whether
the endowment effect is activated even when data are quite

similar to each other. Furthermore, we will incorporate this
effect into the optimization problem as a modified version of
this framework.

A Proofs of Theorems and Lemmas
We show some proofs of Lemmas and Theorems.

First, we prove Theorem 3. To prove this, we first intro-
duce two lemmas and these proofs.

Lemma 2. When we set n1.7 as following the rule of E-
OGD and the condition is satisfied, values of ry and n be-
come one of the following two types: (1) ry = 1,m; = ¢/V/1,

2)re=1+7v,m =c(l+7)/VL

Proof. This Lemma is proved directly from the definition
of r; and n;. When y; = g, is satisfied, 7, = 1 + ~ and
ne = c(1 +7)/+/t. When y; # 9; and it has never been
correctly classified in the past, 7; = 1 and 7; = ¢/+/t. In
summary, 7; and 7; becomes one of two pairs of values. [J

Lemma3. (r;/n;)—(ri—1/mi—1) > Oforallt > 2 when the
algorithm has not misclassified the data that were correctly
classified in the past.

Proof. This result can be obtain directly from the results of
Lemma 2. We see that r; /1, becomes v/Z/c in both cases
in Lemma 2. Therefore, (7;/n;) — (r¢—1/mi—1) = Vt/c —
Vit—1/c>0. O

From these lemmas, we can analyze the upper bound of

regret of E-OGD in the online learning setting with a human
cognitive bias. Below is the proof of Theorem 3.

Proof. For simplicity, let us denote V£(wy; z;) as g;. The
convexity of loss functions guarantees that the first-order ap-
proximation inequality is satisfied for all u, i.e.,

li(a) > (g, u — wy) + £ (wy) . (18)



This convexity property reformulates the regret bound.

T

Regret(T) = Z 74 (

t=1

li(wy) — m&n li(u))

T
< m&ert(Et(wt) +
t=1
T
:mlzlixzh<gt,wt —u). (19)

t=1

(8, Wi — 1) — £(wy))

We define for all ¢, viy1 = wy — 1 V£ (W;). From this
definition, we obtain the following equations.
Vipr —u = (wy —u) — gy
IVers —ull3 = [we —ull3 — 20 (ge, we — ) + 0 lgell3
[Wesr — w3 < [[we —ull3 — 20¢(ge, we — u) + 777 [1ge 13
1

— p— 2 [—
g (e —

(g, Wy —u) <

Through these inequalities and some assumptions on the
norms of weight vectors and gradients, the following refor-
mulation can be applied for any u,

T
Z r(gt, We — 1)
t=1

77t7‘t
ull3) +

— [[Weg1 — [k
=1 <Mt ’
1 rT

< s—|wi —ul5 - oW = ulf3
m T
T T
1 Tt ’I"t]) 2 G2
+ = — = W —u|3 + — r
2;(% N1 ” t Hz 2 2771: t
T T T T
<R L+ < - ) Nert
<771 ; e Nt—1 Z
2 2 T
2R rr G
= - et
nr 2 4

The assumption ||g|l2 < G is used in the second inequality
and ||w||2 < R is used in the third inequality.

The following inequality is derived by setting r, = 1 +
and 1; = c(1 + ~)/+/t for all t in the second term.

2R2\/T G2(1+7 Z )

c

Regret(T) < (
t=1

2
< <2f LGl +7>2) VT. (o)

by using Zt v 2v/T. When ¢ = v2R/G(1 + 7), we
have

Regret(T) < 2v2RG(1 +)VT .

Tt
Iwirs = ll3) + 5 lel3

Next, we show the proof of Lemma 1.

Proof. When E-OGD runs in this setting, the algorithm au-
tomatically constructs a set of correctly classified examples
P. These examples are sampled from D and chosen with
an on-the-fly prediction. For simplifying the discussion, we

define
1 X
_TZ”(Z)' 21
t=1

Let us define p(x, y) as a probability density function ac-
cording to a distribution D. The set P is constructed from
examples sampled from D. For any datum in P, the datum’s
occurrence probability in D becomes necessarily greater
than 0. The optimization formula can be reformulated ac-
cording to basic probabilistic properties:

E..p [E(w; 2) + C(w; z)]

=F,.p [F( )K(W,z)] )

Furthermore, we can construct a new distribution Dp as
follows: The probability function g of Dp is defined as

__7(2)p(z)
a(2) = ff(z)p(z)dz ' (22)

We denote the denominator of formula (22) as Hpr. In this
case, the optimization problem can be reformulated accord-
ing to basic probabilistic properties:

E..p[f(z)l(w;2)] = HprE.p, [((w;2)] . (23)
O
In the last, we prove Theorem 4.

Proof. First, we analyze the regret bound from round ¢,, to
T.

IR2VT  G2(1+7)? —
¢ 2 t:tp\/g
2
<2R e +7>2> VT
—eG*(1+7)*/t, — 1. (24)
When we set ¢ = v2R/G(1 + ),

T) < VARG(1 +7) (2T

Regret(t, : T')

IN

IA

Regret(t,, : -t — )
(25)
For simplicity, we will describe HprE,.p,[¢(:;2)] as
Dp(-). Let us take the expectation of the regret in the online
learning framework with a human cognitive bias. Now let us
analyze the first term and the second term of the expecta-
tion of the regret. Note that this reformulation uses Lemma



4.3. The expectation of the second term is reformulated as
follows:

T

EDT Z T’f Zf gt

t=t,

Z EDT Tf Zt ét( )}

T

= Z Eth,flEDt [Tt<zt)€t(u)‘pt71:|

= B B 12(2) (05 2)

t=t,

T
=FEprE..p Z ri(2)L(u; 2)
t=t

= (T — tp + l)E'DT [Dp(u)] .

The expectation of the first term can be reformulated with a
similar procedure.

T T
Epr | Y ri(z)l(wi)| = > Epr [re(ze)e(wy))]
. P P
= Z Epi-1E.op [re(2)(wy; 2)]
= EprE..p Z U(wy; 2

T
= Epr HDTEZNDP ZK(WHZ)

t=t,
= (T~ t, + 1) Epr [Dp(w)] .
The inequality is satisfied from the convexity of loss func-

tions. The following formula is obtained by combining these
two formula with Lemma 4.3:

Epr [Dp(W)] — Epr [Dp(u)]

1
S mE'DT [Regret(tp : T)]

V2RG(1 + )
(t, + 1)/VT) /(2= \/t, —1/VT)

S(\/T

B Another step width setting
Lemma 4. We set the step width as follows:
¢ 1
" T

where N, is the number of wrong prediction from round 1
to round t. In this case, (r¢/n) — (re—1/me—1) > 0 for all
t>2.

(26)

Proof. 1t is straightforward to show that for any t > 2, 1, <
1¢—1 is satisfied from the definition of 7;. From this property,
we see that (r¢/n;) — (re—1/mi—1) > 0 is always satisfied
when r, = 14 v (regardless of whether r,_1 = 1 or 1 + 7).
When r, = 1, the algorithm misclassified the example at
t-th round. Therefore, V; is incremented and r;/n; > (1 +
v¥)/n:—1 is satisfied. In summary, (r¢/n:) — (r¢—1/mt—1) > 0
is always satisfied. O

The next theorem gives the regret upper bound of E-OGD.

Theorem S. Let wi,...,wr1 be derived according to E-
OGD’s update rule. Assume that for all wy, |w¢lls < R,
IVl (we)ll2 < G. When we set 1.7 as in Lemma 4 and
¢ = \V2R/G, the upper bound of regret becomes

Regret(T) < V2RG (A+ NN+ (1+79)) VT .

If Ny < T, the regret bound becomes sublinear. In gen-
eral, the probability of mistakes gets lower when the algo-
rithm converges to a well-performed point and N would
not get larger.

Proof. From the proof of Theorem 3, we obtain

T
Zﬁ(gt,wt —u) <
=1

In addition,

QRQT‘T G2 d
+ -
nr 2

NeTe - 27)

t=1

(28)

Susgs

x\o

The following inequality is derived by setting r, = 1+ for
all ¢ in the second term.

2R2 2 &
Regret(T) < (1 +17) ( + = m)
nr 2

t=1
- <2R2(1 + )Nt
o c

+c¢G2(1 +’y)) VT .
(29)

When ¢ = ﬁR/G, we have

Regret(T) < V2RG (1 +9)V ! + (1 + 7)) VT .

O
Theorem 6. Assume that the conditions set in Theorem 3 are
satisfied and there is an integer t,, such that r¢(z) = 74,(2)

for any t > t,. The following formula is satisfied for any
uew,

Epr [Eznp, [((W;2)]] = Eznpp [((4; 2)]
_ VERG (A + )N+ (1+9))
; \/T - (tp - 1)/\/T .

If N < T and t, < T, the convergence speed is

O(1/+/T). When the number of data is finite, there exists
a constant ¢,, such that r,(z) = r;,(2) forany t > t,,.

(30)



Proof. First, we analyze the regret bound from round ¢,, to
T.

T

2R?  G?
Regret(t, : T) < (1+7) P + 5 Z ul
t=t,

2 Nt
<(1+47) <2R(1:7) +cG2> vT (3D

When ¢ = \/QR/G,
Regret(T) < V2RG ((1+ )V + (1 + 7)) VT .

For simplicity, we will describe HprE.p,[l(:;2)] as
Dp(-). By the reformulation as in the same case of Theo-
rem 4, the expectation of the second term is reformulated as
follows:

T
Epr | > r(z)l(u)| = (T —t, +1)Epr [Dp(u)] .

t=t,
The expectation of the first term can be reformulated as:

Epr | Y ri(z)l(wi)| = (T —tp + 1)Epr [Dp(W)] .

t=t,

The following formula is obtained by combining these for-
mulas with Lemma 1
Epr [Dp(w)] — Epr [Dp(u)]
1
D
ST —t,+1
_ V2RG (L4 )N+ + (149))
h VT — (tp — 1)/VT

Epr [Regret(t, : T')]

(32)
O
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