
Healing Truncation Bias : Self-weighted Truncation framework for Dual Averaging

Hidekazu Oiwa
Graduate School of Information Science
and Technology, The University of Tokyo

Tokyo, Japan
hidekazu.oiwa@gmail.com

Shin Matsushima
Graduate School of Information Science
and Technology, The University of Tokyo

Tokyo, Japan
masin@r.dl.itc.u-tokyo.ac.jp

Hiroshi Nakagawa
Information Technology Center

The University of Tokyo
Tokyo, Japan

nakagawa@dl.itc.u-tokyo.ac.jp

Abstract—We propose a new truncation framework for
online supervised learning. Learning a compact predictive
model in an online setting has recently attracted a great
deal of attention. The combination of online learning with
sparsity-inducing regularization enables faster learning with a
smaller memory space than a conventional learning framework.
However, a simple combination of these triggers the truncation
of weights whose corresponding features rarely appear, even if
these features are crucial for prediction. Furthermore, it is dif-
ficult to emphasize these features in advance while preserving
the advantages of online learning. We develop an extensional
truncation framework to Dual Averaging, which retains rarely
occurring but informative features. Our proposed framework
integrates information on all previous subgradients of the loss
functions into a regularization term. Our enhancement of a
conventional L1-regularization accomplishes the automatic ad-
justment of each feature’s truncations. This extension enables
us to identify and retain rare but informative features without
preprocessing. In addition, our framework achieves the same
computational complexity and regret bound as standard Dual
Averaging. Experiments demonstrated that our framework
outperforms other sparse online learning algorithms.

Keywords-Online Learning, Supervised Learning, Sparsity-
inducing Regularization, Feature Selection, Sentiment Analysis

I. INTRODUCTION

Online learning is a training method where a prediction
and an update take place in a sequential setting each time
a learner receives one datum. Online learning is beneficial
for learning from large-scale data in terms of used memory
space and computational complexity. If training data is
very large, many batch algorithms cannot derive a global
optimal solution within a reasonable amount of time because
the computational cost is very high. When all instances
cannot be simultaneously loaded into the main memory,
optimization in batch learning requires some reformulation
for exact solving [1]. On the other hand, many online
learning algorithms update predictors with simple update
formula based on only one new instance. Thus, online
learning runs faster with a smaller memory space than batch
learning in the result. Online learning algorithms are efficient
especially in learning from a dataset where the dimension
of instances or the number of instances is very large. Many
algorithms of batch learning have been transformed into

online ones for the ease of handling large-scale data.
L1-regularization is a well-known regularization method

of generating a compact predictive model. L1-regularization
eliminates parameters that are insignificant for prediction on
the fly. As a result, L1-regularization promotes the derivation
of a compact predictive model. A compact model is able to
reduce the computational time and required memory space
for prediction because it deals with a smaller number of pa-
rameters. In addition, L1-regularization has a generalization
effect for preventing over-fitting to training data.

To combine online learning with L1-regularization, some
frameworks had recently been developed for efficiently
solving large-scale learning problems without preprocessing,
like TF-IDF [2]. One state-of-the-art framework, which is
a combination of online learning with L1-regularization, is
Regularized Dual Averaging (RDA) [3]. RDA integrates a
regularization term into the optimization problem of Dual
Averaging (DA) [4] and enables to obtain a sparse solution
by applying L1-regularization. RDA solves a simple mini-
mization problem that consists of the summation of all past
subgradients of loss functions and the whole regularization
term to search for the optimal parameters at each update.
RDA outperforms other sparse online learning frameworks
in terms of model compactness and precision [3].

Although online learning combined with L1-
regularization is indispensable for large-scale learning,
conventional frameworks do not take into consideration the
information on feature occurrence frequency. As a result,
rare features are easily dropped from a predictive model,
even though these features are crucial for prediction. The
frequency of feature occurrences is not usually uniform in
many tasks, such as natural language processing and pattern
recognition. Furthermore, if there is a heterogeneity of the
value range among features, these algorithms also tend
to truncate parameters the features of which take values
around 0.

We propose a new truncation framework to retain rare but
informative features in an online setting. The key idea behind
our proposed framework is to integrate the absolute values
for the subgradients of loss functions into the regularization
term. By applying this extension into RDA, our framework
can dynamically weaken truncation effects in rare features.

We also analyze the theoretical aspects of the new truncation
framework. As a result, the same computational complexity
and the regret upper bound are derived as those for RDA.
Finally, we evaluated how effective our framework was
through several experiments. Experimental results revealed
that our framework healed the truncation bias occurred in
previous work and outperformed state-of-the-art methods
while maintaining a similar compactness to other algorithms.

The composition of this paper is as follows.
• Section II: we introduce a conventional RDA frame-

work, which introduces a regularization term into DA.
• Section III: we present a new truncation framework,

which can be applied to RDA. We show some analyses
for our framework and a closed-form solution.

• Section IV: we prove the regret bound for our algo-
rithms to ensure the upper bound of objective functions.

• Section V: we compare our framework with other
sparse online learning algorithms through several tasks.

• Section VI: we conclude the paper and refer to future
work.

A. Related Work

First note that some extentional work for DA have been
done. Shalev-Shwartz et al. [5] proposed a primal-dual
framework. This primal-dual framework develops a new
universal bound in optimization problems to search for the
optimal hypothesis. Moreover, some algorithms for online
learning have been proposed to obtain tighter upper bounds
for convergence than other algorithms. DA is a special case
of this primal-dual framework. Dekel et al. [6] proposed a
mini-batch version of DA so that it could process instances
in a distributed environment. They proved an asymptotically
optimal regret bound for smooth convex loss functions and
stochastic examples. Lee et al. [7] focused on characteristics
where RDA could identify a low-dimensional manifold
induced by a regularized term in a weight space. This
observation promoted the development of a new DA-based
algorithm for faster search for the optimal weight. As a state-
of-the-art optimization framework for sparse online learning,
many researchers had focused on and utilized DA.

Other than DA, a splitting method framework has also
been proposed for sparse online learning. This framework
consists of two steps at each round. In the first step, a predic-
tor is updated to improve the accuracy of prediction by using
the received instance. Optimization methods, such as sub-
gradient method [8] or Stochastic Gradient Descent (SGD),
have often been used in the first step. Then, regularization
has been applied in the second step. Splitting method is a
well known approach because it can integrate online learn-
ing with L1-regularization while preserving the advantages
of the two techniques. Carpenter [9] proposed a splitting
approach that combined SGD with L1-regularization. Then,
Duchi and Singer [10] and Langford et al. [11] generalized
splitting frameworks. Duchi and Singer’s framework was

called FOBOS [10]. These algorithms were guaranteed to
asymptotically offer regret O(

√
T) under certain conditions.

Oiwa et al. [12] proposed an extention to FOBOS that
integrated information on feature occurrence into a regu-
larization term to solve the truncation problems. Specifi-
cally, subgradient method with frequency-aware truncation
in FOBOS was called SGFT. SGFT achieved the same com-
putational cost and the same convergence rate as FOBOS.
The idea behind our framework, healing truncation bias, was
inspired by Oiwa et al., however, the definition of introduced
parameters is different. The treatment of step width is the
most important different part between these two frameworks.
This difference achieves our intention more precisely as
described below.

Moreover, Duchi et al. [13] proposed a new update
scheme called AdaGrad. AdaGrad incorporated the knowl-
edge of instances observed in earlier iterations into a proxi-
mal function to emphasize rare features without preprocess-
ing. However, AdaGrad could neither normalize each fea-
ture’s value range nor reflect information on a just received
datum because it controlled the feature importance only in
a proximal function. Our proposed framework solved these
problems as will be explained later.

Other than sparse online learning, some significant algo-
rithms have been proposed in the field of online learning
for classification. Perceptron [14], Passive-Aggressive [15],
and Confidence-Weighted [16], [17] algorithms (CW) are
well-known methods that are alternatives to subgradient-
based approaches. CW algorithms are state-of-the-art in
this field. CW introduced a Gaussian distribution into a
weight vector to capture functionalities of rare features.
When CW updated a learner, CW emphasized informative
rare features according to confidence parameters updated on
the fly. However, these algorithms did not generate sparse
solutions. In addition, they were specialized to classification.

II. REGULARIZED DUAL AVERAGING (RDA)

First, let us introduce the notations we have used in this
paper. Scalars are in lower-case italics, e.g., λ, and the
absolute value of each scalar is |λ|. Vectors are in lower-
case bold, such as x, and the i-th entry of vector x is
represented as x(i). Matrices are in upper-case bold, e.g., X.
‖x‖p represents an Lp norm of vector x. 〈x,y〉 denotes an
inner product of two vectors x,y. Let domf be the domain
of function f . Function sign is defined as sign(λ) = λ/|λ|
where λ is a scalar (If λ = 0, sign(λ) = 0). Let argminh
be a unique point for minimizing function h. Let Argmin Ψ
be the set of minimizing points of function Ψ. Table I
summarizes the notations used here.

We focus on sparse online learning with a linear predictor
in this work. At round t, the algorithm receives instance
xt ∈ X ⊂ <d where X is an input space. Then, it applies
current weight vector wt ∈ W ⊂ <d to make a prediction.
Let W be a closed convex set. It then receives true value

Table I
NOTATION

a scalar
a vector
A matrix
a(i) i-th entry of vector a
|λ| absolute value
‖a‖p Lp norm
〈a,b〉 inner product
domf domain of function f

argminh unique point for minimizing function h
Argmin Ψ set of minimizing points of function Ψ

yt ∈ Y ⊂ < and generates subgradient gt ∈ ∂`t(wt) using
loss function `t(·) : W → <.

Here, we deal with a linear predictive model. In a linear
setting, we make a prediction through the value of the inner
product of a current weight vector and an input vector. To
evaluate the loss through a linear setting, we assume a loss
function `t that exists in function ˆ̀

t(·) : < → < where
`t(wt) = ˆ̀

t(〈wt,xt〉). Generally, a loss function is defined
as non-decreasing for the distance between yt and 〈wt,xt〉.
Many well-known loss functions satisfy this condition, such
as the squared loss function,

`t(wt) = (yt − 〈wt,xt〉)2 , (1)

and the hinge loss function,

`t(wt) = [1− yt〈wt,xt〉]+ . (2)

Then, we update a predictor for minimizing the value of loss
functions. At the same time, we truncate parameters to make
a predictive model compact. The objective of sparse online
learning is to derive an optimal weight vector w, which is
a sparse vector and effective for prediction.

We introduce Regularized Dual Averaging (RDA) [3].
RDA updates a learner subject to (3) at each round.

wt+1 = argmin
w

t∑
τ=1

〈gτ ,w〉+ tΨ(w) + βth(w) (3)

The first term describes the inner product of the weight
vector and the summation of all previous subgradients.
This term works for the minimization of loss functions
through the first-order approximation of these functions. The
second term indicates regularized term Ψ(w), which is a
closed convex function. To obtain a sparse weight vector,
it is possible that the L1 norm of the weight vector is
inserted into Ψ(w), i.e., L1-regularization. The third term
describes a proximal function term. {βt}t≥1 is a positive
and non-decreasing input sequence, which determines the
convergence properties of RDA and h(w) is a strongly
convex auxiliary function that satisfies

argmin
w

h(w) ∈ Argmin
w

Ψ(w) . (4)

A function h : W → < is called strongly convex if there is a
constant σ > 0 where it satisfies inequality (5) with respect
to a norm ‖ · ‖ for any a,b ∈W and for any α ∈ [0, 1].

h(αa + (1− α)b) ≤ αh(a) + (1− α)h(b)

−σ
2
α(1− α)‖a− b‖2 . (5)

σ is called the convexity parameter. RDA is guaranteed to
offer regret bound O(

√
T).

III. SELF-WEIGHTED TRUNCATION FRAMEWORK
FOR DUAL AVERAGING (STDA)

As noted in Section I, online learning that applies con-
ventional L1-regularization does not take into account the
occurrence counts of features. When learning with a linear
model in an online setting, conventional L1-regularization
tends to truncate some characteristic features because simple
L1-regularization applies the same penalty to all features
independent of their value range or occurrence frequency.
This property produces biases toward the truncation. We
show two examples where conventional L1-regularization
causes problems that are common in sparse online learning.

A. Feature Occurrence Frequency Problem

Let us assume RDA with conventional L1-regularization.
Let Ψ(w) be λ‖w‖1 where λ is a scalar, h(w) be ‖w‖22,
and βt be 1/

√
t. We apply this algorithm to a dataset in

which the occurrence rate of feature A is 1/100 and that
of feature B is 1/2. Feature A inevitably becomes 0 unless
100λ is exceeded by the average of the A-th absolute values
of subgradients whose A-th index is non-zero, i.e.,

ĝ(A) ≥ 100λ , (6)

is satisfied where ĝ(i) is the average value of the i-th absolute
values of subgradients only taking the i-th index to be non-
zero. On the other hand, the weight of feature B does not
always drop to 0 where

ĝ(B) ≥ 2λ . (7)

If there is heterogeneity of occurrence frequency among
features, the algorithm may fail to retain features that are
rare but significant for prediction. Occurrence frequency is
skewed in many tasks such as NLP and pattern recognition.

B. Value Range Problem

The disparity of value range of features also affects the
truncation. Let us assume that there are two features: feature
C is an arbitrary feature and feature D is one whose value
is 1000 times larger than that of feature C. While learning
from this dataset,

1000|ḡ(C)| = |ḡ(D)| , (8)

is always satisfied where ḡ(i) is the average value of the
i-th index of all previous subgradients. Thus, the weight of

feature C is truncated faster than that of feature D by RDA,
although they both have the same effect in prediction. That
is,

|ḡ(C)| ≤ λ < |ḡ(D)| , (9)

might be satisfied. If |ḡ(i)| ≤ λ, the weight of feature
i becomes 0. Thus, there is a possibility that feature C
is truncated even though feature D is not. The converse
phenomenon doesn’t occur.

C. Self-weighted Truncation Modeling for DA

To overcome the above problems, we propose a self-
weighted truncation framework — a framework that auto-
matically tunes the intensities of truncation. Our proposed
framework enables to retain rare but informative features
in an online setting. Self-weighted truncation framework is
inspired by frequency-aware approaches in splitting methods
[12]. Self-weighted truncation modeling integrates the infor-
mation from all previous subgradients into a regularization
term. This extension enables to adjust for the effect of
truncation taking each subgradient’s occurrence frequency
into consideration. Self-weighted Truncated Dual Averaging
(STDA) defines the regularization term as:

Ψt(w) = λ‖Rt,pw‖1 , (10)

where

Rt,p =

r

(1)
t,p 0 . . . 0

0 r
(2)
t,p . . . 0

...
...

. . .
...

0 0 . . . r
(d)
t,p

 s.t. r
(i)
t,p = p

√√√√ t∑
τ=1

∣∣∣g(i)
τ

∣∣∣p .

r
(i)
t,p is the value of Lp norm of a vector that consists

of feature i’s all previous subgradients. Rt,p is a matrix
consisting of r(i)

t,p of all features in a diagonal component. λ
is a regularization parameter to control the trade-off between
loss-minimization and regularization.

We can place a wide variety of values into p to adjust the
difference in truncation intensity. We give a simple example
to demonstrate how parameter p influences self-weighted
parameters r(i)

t,p. Let us assume that the components of all
subgradients are limited to either 0 or 1. To represent the
relationship between the value of r(i)

t,p and the occurrence
count of i-th index of subgradients in this setting, we show
an illustrative example in Figure 1. The horizontal plot
shows the number of occurrences in ascending order. The
vertical plot indicates the value of r(i)

t,p. Figure 1 indicates
that the smaller the value of p is, the slower a rare feature is
truncated. Note that conventional L1-regularization can be
regarded as the algorithm of r(i)

t,p = 1 for all t, i.
In the remainder of this section, we fix parameter p and

omit it, such as that from Rt,p to Rt and that from r
(i)
t,p to

r
(i)
t to simplify our explanation.

By using definition Ψt(w) above, we modify the opti-
mization problem as:

wt+1 = argmin
w

t∑
τ=1

(〈gτ ,w〉+ Ψτ (w)) + βth(w) . (11)

From equation (10), when the value of r
(i)
t is large,

the algorithm tends to truncate the weight w
(i)
t whose

corresponding features frequently appear. If a feature is rare
where the number of non-zero subgradient values at this
feature is small, r(i)

t has a high probability of being a small
value. Thus, we can adjust the value of truncation according
to the subgradient information.

D. Feature Occurrence vs. Subgradient Occurrence

Truncation tuning based on the feature occurrence fre-
quency could solve the problems described above. However,
we adjust truncation intensity in accordance not with the
feature occurrence frequency but with the occurrence fre-
quency of subgradients. This is because a weight vector is
updated as proportional to subgradient counts rather than
feature occurrence counts. Thus, regularization should be
performed along with subgradient occurrence counts.

We give one example that explains why a subgradient is
better than a feature. Let us assume that the dataset contains
a feature that frequently occurs. In this dataset, RDA can
obtain an appropriate weight value for this feature just after
we receive the first few data. Even after obtaining a good
weight for that feature, RDA receives many data containing
the feature. Thus, the feature occurrence count continues
to increase. In this case, a self-weighted parameter works
to drop the weight even if the optimal weight has already
been obtained. On the other hand, in the case of truncation
based on a subgradient, a self-weighted parameter moves
slowly if the weight is already sufficiently learned. This
is because the values of the corresponding subgradients
become small. For these reasons, a subgradient works better
as the information for a self-weighted truncation framework
than a feature. We verify the desirability of our modeling
through the experiments.

E. Closed-form Solution to STDA

We derive the closed-form update formula for weight
vector wt in the case of h(w) = ‖w‖22/2. Our derivation
is similar to that by Xiao [3], except for the definition of
Ψt(w).

Let rt be a vector that consists of self-weighted parameter
r

(i)
t at each component and let r̄t be the average of all

previous self-weighted parameters rτ until t. Let ḡt be
the average of all previous subgradients gτ until round t.
Moreover, we define ut, each element of which follows
equation (12), to simplify our explanation.

u
(i)
t =

t∑
τ=1

|g(i)
τ |p (12)

Figure 1. Comparison of self-weighted parameter r(i)t,p against parameter p

First, the algorithm updates parameter ut as:

u
(i)
t = u

(i)
t−1 + |g(i)

t |p . (13)

Then, we calculate self-weighted parameters rt and r̄t as:

r
(i)
t =

p

√
u

(i)
t . (14)

r̄t =
t− 1

t
r̄t−1 +

1

t
rt . (15)

We calculate new weight vector wt+1 following equation
(11). First note that the optimization problem (11) can be
decomposed into d independent coordinates of wt as

w
(i)
t+1 = argmin

w

(
tḡ

(i)
t w + tλ|r̄(i)

t w|+ βt
2
w2

)
, (16)

where coefficient λ > 0 can be arbitrary. From the definition
of r

(i)
t , clearly r̄

(i)
t ≥ 0. Thus, the optimal solution to

formula (16) is subject to

ḡ
(i)
t + λr̄

(i)
t ξ(i) +

βt
t
w

(i)
t+1 = 0 , (17)

where ξ(i) is a subgradient of |w(i)
t+1|. The differential of |w|

are 1 if w > 0, −1 if w < 0, or {ξ ∈ R| − 1 ≤ ξ ≤ 1} if
w = 0. Therefore, we can solve the optimization problem
as:
• If |ḡ(i)

t | ≤ λr̄
(i)
t , we set w

(i)
t+1 = 0 and ξ(i) =

−ḡ(i)
t /λr̄

(i)
t . When w(i)

t+1 6= 0, equation (17) cannot be
satisfied.

• If ḡ(i)
t > λr̄

(i)
t > 0, we must set w(i)

t+1 < 0 and ξ(i) =
−1.

• If ḡ(i)
t < −λr̄(i)

t < 0, we must set w(i)
t+1 > 0 and

ξ(i) = 1.
We finally obtain a closed-form solution as:

w
(i)
t+1 =

 0 |ḡ(i)
t | ≤ λr̄

(i)
t

− t

βt
ε
(i)
t otherwise

, (18)

where we define ḡ(i)
t −sign(ḡ

(i)
t)λr̄

(i)
t as ε(i)t . We summarize

the algorithm for STDA in Algorithm 1.

Algorithm 1 Self-weighted Truncated Dual Averaging
(STDA)
Require:

1: {βt}t≥1 is a positive and non-decreasing sequence.
2: w1 = 0, u0 = 0, ḡ0 = 0 and r̄0 = 0.

Algorithm:
1: for t = 1, 2, . . . do
2: Given loss function `t, and compute subgradient gt ∈

∂`t(wt).
3: Update the average of all previous subgradients ḡt as

ḡt = (t− 1)ḡt−1/t+ gt/t.
4: Calculate self-weighted parameters rt by eq. (13) and

eq. (14).
5: Derive new parameters r̄t by eq. (15).
6: Update weight vector by eq. (18).
7: end for

The existence of parameters r̄
(i)
t makes a difference

between the proposed formula and the update formula in
RDA. From the update formula in STDA, we can see that
parameters r̄(i)

t , which is an average value of the sequence
{r(i)
t }, tune the intensity of truncation. The bigger the value

of r̄(i)
t , the smaller the value of ε(i)t , that is, the stronger the

intensity of truncation. The value of ε(i)t becomes big when
that weight is updated in a certain direction. If an update
direction fluctuates with respect to a weight, r̄(i)

t becomes
big while the absolute value of r̄(i)

t is small. Thus, STDA
tends to retain rare features that have a strong polarity.

Note that STDA can compute updates in lazy form for
faster calculation. We only use parameters whose features
occur in a received datum when it comes to prediction.
Thus, the evaluations of eqs. (14), (15), and (18) can be
postponed until corresponding features occur. When we run
this algorithm in lazy update form, the computational cost
becomes O(the number of occurring features) at each round.

IV. REGRET ANALYSIS OF STDA

Even if an algorithm receives any instance or convex
loss function sequence, the algorithm’s regret bound is
guaranteed by o(T); then, we can say that weight vector
wt converges to static optimal vector w∗ in convex set W .
In this paper, regret is measured as:

R`+Ψ(T) =

T∑
t=1

ft(wt)− inf
w

T∑
t=1

ft(w) , (19)

where ft(w) = `t(w) + Ψt(w).
We assume the sequence of subgradients {gt} is bounded

by constant G, i.e.,

‖gt‖∗ ≤ G , (20)

where ‖g‖∗ = max‖w‖≤1〈g,w〉 is a dual norm in space
W ∗, which is the vector space of all linear functions on W
endowed with norm ‖w‖.

First, we bound r(i)
t using a scalar V so that we can ensure

domΨt does not go to infinity. We redefine rt as:

r
(i)
t = min

V, p

√√√√ t∑
τ=1

∣∣∣g(i)
τ

∣∣∣p
 , (21)

i.e., we set the upper bound for r(i)
t to V . From this defini-

tion, if we assume formula (20) is satisfied, and let D be a
positive scalar value, we can derive the following inequality
for any t ≥ 1 and any w ∈ {v ∈ domΨt|h(v) ≤ D2},

1

t

t∑
τ=1

Ψτ (w) ≤ V ‖w‖1 . (22)

Next, we prove the regret bound for our algorithms. While
our regret bound is similar to that in Xiao’s analysis [3], it
is not the same because we must consider the effect of Rt.

We can prove Theorem 1 to bound the regret.
Theorem 1: Let sequences {wt}t≥1 and {gt}t≥1 be gen-

erated by Algorithm 1. Furthermore, let us assume that
conditions (20) and (21) are satisfied. Then, we define
βt = γ

√
t where γ is a constant and D is a positive

constant. We also assume optimal w is restricted in the set
of {v ∈ domΨT |h(v) ≤ D2}. In this case, for any T ≥ 1
we have

R`+Ψ(T) ≤
(
γD2 +

G2

γ

)√
T . (23)

The proof of Theorem 1 is in the Appendix.

V. EXPERIMENTS

We evaluated STDA using two-type classification tasks.
First, we used sentiment classification tasks [18] for

reviews of Amazon.com goods. In these tasks, algorithms
try to classify whether a positive or negative opinion was
noted from a review text. We selected four categories in

these datasets: books, dvd, electronics, and kitchen. Feature
vector consists of unigram and bigram features.

Second, we used the 20 Newsgroups dataset (news20)
[19]. The news20 is a news categorization task where
algorithms try to predict to what category each news article
will be assigned. This dataset consists of about 20,000 news
articles. Each article is assigned to one of 20 predetermined
categories. We used two subsets of news20: ob-2-1 and sb-
2-1 1. The number of categories and the closeness between
categories differed in each subset. The ’o’ indicates ’overlap’
and ’s’ denotes ’separated’ for the first letter of each subset
name. Classifying categories correctly is more difficult with
an ’overlap’ dataset.

We have provided the specifications for each dataset
in Table II, including the number of features, instances,
categories, and the types of categories.

A. Experimental Settings

We examined STDA, RDA, FOBOS [10], and SGFT [12]
to compare the error and sparseness rates. The hinge loss
function (2) was used as loss functions in these experiments.

The parameter setting in STDA is as follows. We set
h(w) = 1/2‖w‖22 and βt =

√
t. It should be noted that

the difference of βt had an insignificant effect on the results
as long as it satisfied βt ∝

√
t. As an upper bound of self-

weighted parameter, we set V = 108 to satisfy the regret
bound restriction. The value of r(i)

t had never attained 108;
thus, the value of V did not influence the result.

In RDA, the settings of h(·) and βt were the same as
those in STDA. In FOBOS and SGFT, the sequence of step
size was set to ηt = ηt+1/2 = 1/

√
t to satisfy the regret

bound restriction.
We executed 10-fold cross-validation by adjusting param-

eter λ to derive a highly predictable sparse weight vector.
First, we divide each dataset into 10 subsets to search
the appropriate parameter for achieving a low error rate
with a sparse weight vector by using 9 subsets, called a
training set. After tuning λ, the algorithms learn parameters
from the training set through 20 iterations, which is to say,
we run through all training examples 20 times. Then, we
evaluate the error and sparseness rate using the remaining
subset. Sparseness rate is calculated by (the number of zero
components in the final weight vector) / (the number of
components in the weight). This process recurs until all
combinations are tried.

B. Experimental Results in STDA

We show the functionality of parameter p and the validity
of our framework based on a subgradient. We evaluated the
performance of STDA when we changed the parameter p
and the definition of self-weighted parameters r(i)

t,p. In the

1http://mlg.ucd.ie/datasets/20ng.html

Table II
DATASET SPECIFICATIONS

of instances # of features # of categories type of categories
books 4,465 332,440 2 positive / negative
dvd 3,586 282,900 2 positive / negative
electronics 5,681 235,796 2 positive / negative
kitchen 5,945 205,665 2 positive / negative
ob-2-1 1,000 5,942 2 graphics / space
sb-2-1 1,000 6,276 2 christian / windows

case of modeling based on a feature occurrence frequency,
we define r(i)

t,p as follows:

r
(i)
t,p = p

√√√√ t∑
τ=1

∣∣∣x(i)
τ

∣∣∣p . (24)

From STDA, we evaluated the algorithms of p = 1, 2,∞
for each self-weighted parameter setting. Table III shows
the experimental results.

From the results, we can see that STDA p = 2 and p =∞
based on a subgradient outperformed other algorithms in
terms of both sparseness and precision in most tasks. These
results support the discussion in Section III-D. There are no
significant differences of results between p = 2 and p =∞.

We note that the results are very unstable in STDA p = 1
because it is difficult to derive a well-predictable sparse
weight vector. In most cases, they cannot obtain a sparse
weight vector except for 100%, i.e., a zero vector. The reason
for this is that the incremental value of r(i)

t added at round
t is the same as g(i)

t or x(i)
t . Once r̄(i)

t is larger than ḡ(i)
t , i-

th weight is clipped to 0 for any round t. It is very hard
to control hyper-parameter λ and obtain a sparse weight
vector that is also useful for prediction. When p > 1, this
phenomenon is unlikely to occur because the incremental
value of r(i)

t added at round t decreases.

C. Experimental Results compared with those from Previous
Work

Table IV shows the experimental results for STDA p =
∞, RDA, FOBOS, and SGFT. In SGFT, we set p = 2 when
SGFT achieved the best performance as in [12].

When comparing STDA with RDA, STDA outperforms
RDA in terms of both error and sparseness rates in four
out of six datasets. In the other two datasets, the figures of
STDA p = ∞ is not below those of RDA at all aspects.
From these experimental results, we note that self-weighted
truncation framework could improve prediction accuracy by
retaining rare but informative features. At the same time,
we can attain the same sparseness rate because STDA can
truncate unimportant features for prediction.

For finding out the functionality of our extensions, we
show that STDA and RDA obtain what discriminative fea-
tures are important in Table V. In this experiment, we used
books dataset. Features are listed where one algorithm has

Table V
SAMPLES OF IMPORTANT FEATURES IN EACH ALGORITHM.

OCCURRENCE COUNTS IN TRAINING DATASET ARE DENOTED IN
PARENTHESES.

STDA (p = ∞) RDA
some interesting (117) his (1491)

a constructive (101) more (877)
be successful (64) time (1161)
was blatantly (29) almost (376)

smearing (30) say (2407)

Figure 2. Comparison between feature occurrence frequencies in the
predictive models of STDA and RDA

determined that a feature is important while the other algo-
rithm has determined that it is unimportant for prediction.
These results indicate that STDA could retain rare features,
e.g., smearing and some interesting, while in RDA these
features were overly truncated. On the other hand, we can
see that frequently occurring but not good predictive terms,
such as his and more, are well truncated in STDA.

Additionally, in Figure 2, we show frequency statistics
of features that each algorithm retains. Features are sorted
by the occurrence frequency in ascending order from left to
right for each result. The vertical plot indicates the occur-
rence frequency of each feature. The scale is logarithmic.
Figure 2 indicates that STDA obtains rarer features than
RDA. This is verified by the fact that the line of STDA is
below that of RDA in most parts of the figure.

When comparing STDA with FOBOS, STDA largely out-
performed FOBOS in terms of precision in all datasets. This
indicates that the RDA learning framework had a significant
advantage over the FOBOS learning framework. In addition,
we can see that SGFT cannot obtain the highly predictable
solution when the sparse rate is above a threshold. Since
the step width in SGFT enlarges self-weighted parameters

Table III
EXPERIMENTAL RESULTS AMONG STDA FAMILY : THE RATES OF ERROR AND SPARSENESS (ITERATIONS : 20). THE SPARSENESS RATE ARE IN

PARENTHESES. THE BEST FIGURES AMONG ALL ALGORITHMS EXCEPT STDA (p = 1) FOR EACH DATASET ARE WRITTEN IN BOLD.

STDA (p = 1) STDA (p = 2) STDA (p = ∞) STDA (p = 1) STDA (p = 2) STDA (p = ∞)
Subgradient Subgradient Subgradient Feature Frequency Feature Frequency Feature Frequency

books 13.65 13.12 13.50 12.86 13.44 13.64
(30.34) (87.73) (91.13) (32.28) (86.77) (91.09)

dvd 12.66 13.25 13.69 12.88 14.64 13.86
(31.31) (85.16) (94.74) (32.36) (89.23) (89.12)

electronics 9.86 10.51 10.70 10.08 10.93 10.51
(31.98) (95.89) (88.93) (39.66) (87.44) (88.56)

kitchen 7.89 8.98 9.05 7.96 9.54 9.12
(35.08) (95.90) (97.36) (40.51) (89.40) (88.34)

ob-2-1 1.50 2.80 3.80 4.90 5.40 6.20
(54.39) (80.74) (82.30) (78.28) (78.44) (75.01)

sb-2-1 0.80 1.40 1.20 9.20 2.60 2.70
(60.25) (86.99) (93.69) (78.92) (87.80) (87.87)

Table IV
EXPERIMENTAL RESULTS COMPARED TO PREVIOUS WORK : THE RATE OF ERROR AND SPARSENESS (ITERATIONS : 20). THE SPARSENESS RATE ARE

IN PARENTHESES. THE LOWEST ERROR RATES AND THE HIGHEST SPARSENESS RATES FOR EACH DATASET ARE WRITTEN IN BOLD.

STDA (p = ∞) RDA FOBOS SGFT(p=2)
books 13.50 14.00 15.72 45.52

(91.13) (88.69) (80.39) (84.19)
dvd 13.69 14.42 18.13 37.56

(94.74) (93.23) (91.60) (82.91)
electronics 10.70 11.06 12.59 30.67

(88.93) (91.93) (90.54) (84.77)
kitchen 9.05 9.77 10.73 27.21

(97.36) (91.23) (90.36) (86.15)
ob-2-1 3.80 3.10 6.00 15.00

(82.30) (76.96) (83.05) (79.89)
sb-2-1 1.20 2.30 4.00 19.30

(93.69) (89.74) (70.91) (82.37)

included in the first few features more than expected, it
over-truncates features even if they are very useful. These
results backed up the experimental results obtained by Oiwa
et al. [12] where RDA is more precise than frequency-aware
truncated FOBOS in most tasks.

VI. CONCLUSION

We proposed self-weighted truncation framework for Dual
Averaging to retain rare but informative features in an on-
line setting. Our proposed truncation framework integrated
information on all previous subgradients into a regularized
term to adjust the truncation effect on the fly. We could
solve the problem of conventional L1-regularization in this
way, where rare features were truncated on a priority basis
even if these features were important for prediction. Fur-
thermore, we proved the theoretical guarantees of STDA by
deriving the computational cost and finding the upper regret
bound. Finally, we evaluated the performance of our meth-
ods in experiments. The results revealed that the methods
we proposed outperformed previous sparse online learning
algorithms while preserving the sparseness. Moreover, we
showed that STDA could retain rare but informative features.

One remaining issue is whether we can modify the
algorithm to choose the optimal figure of parameter p in

an online setting. We aim to investigate these questions and
further extend our proposed methods.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI, Grant-
in-Aid for JSPS Fellows for Hidekazu Oiwa and Shin
Matsushima.

REFERENCES

[1] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin, “Large
linear classification when data cannot fit in memory,” in KDD.
ACM, 2010, pp. 833–842.

[2] G. Salton and C. Buckley, Term-weighting approaches in
automatic text retrieval. Morgan Kaufmann Publishers Inc.,
1997, pp. 323–328.

[3] L. Xiao, “Dual averaging methods for regularized stochastic
learning and online optimization,” Journal of Machine Learn-
ing Research, vol. 11, pp. 2543–2596, 2010.

[4] Y. Nesterov, “Primal-dual subgradient methods for convex
problems,” Mathematical Programming, vol. 120, no. 1, pp.
221–259, 2009.

[5] S. Shalev-Shwartz and Y. Singer, “Convex repeated games
and fenchel duality,” in Advances in NIPS. MIT Press, 2007,
pp. 1265–1272.

[6] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Opti-
mal distributed online prediction using mini-batches,” Journal
of Machine Learning Research, vol. 13, pp. 165–202, 2012.

[7] S. Lee and S. J. Wright, “Manifold identification of dual
averaging methods for regularized stochastic online learning,”
in Proc. of ICML. Omnipress, 2011, pp. 1121–1128.

[8] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena
Scientific, 1999.

[9] B. Carpenter, “Lazy sparse stochastic gradient descent for
regularized multinomial logistic regression,” 2008.

[10] J. Duchi and Y. Singer, “Efficient Online and Batch Learning
Using Forward Backward Splitting,” Journal of Machine
Learning Research, vol. 10, pp. 2899–2934, 2009.

[11] J. Langford, L. Li, and T. Zhang, “Sparse online learning via
truncated gradient,” Journal of Machine Learning Research,
vol. 10, pp. 777–801, 2009.

[12] H. Oiwa, S. Matsushima, and H. Nakagawa, “Frequency-
aware truncated methods for sparse online learning,” in
ECML/PKDD, vol. 2. Springer-Verlag, 2011, pp. 533–548.

[13] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, pp. 2121–
2159, 2011.

[14] F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, vol. 65, no. 6, pp. 386–408, 1958.

[15] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer, “Online Passive-Aggressive Algorithms,” Journal
of Machine Learning Research, vol. 7, pp. 551–585, 2006.

[16] M. Dredze and K. Crammer, “Confidence-weighted linear
classification,” in Proc. of ICML. ACM, 2008, pp. 264–271.

[17] K. Crammer, M. Dredze, and F. Pereira, “Exact convex
confidence-weighted learning,” in Advances in NIPS, 2008,
pp. 345–352.

[18] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, Bolly-
wood, Boom-boxes and Blenders: Domain Adaptation for
Sentiment Classification,” in Proc. of ACL. Association for
Computational Linguistics, 2007, pp. 440–447.

[19] K. Lang, “Newsweeder: Learning to filter netnews,” in Proc.
of ICML. Morgan Kaufmann, 1995, pp. 331–339.

APPENDIX : REGRET ANALYSIS OF STDA
We prove Theorem 1 in this Appendix. Our proof is

written in line with Xiao’s [3] proof because this proof is
similar to that of Xiao [3]. The difference between these two
proof procedures is the definition of Ψt(w) and the effect
of this change.

First, we define the summation of all previous subgradi-
ents as st, i.e.,

st =

t∑
τ=1

gτ = tḡt . (25)

Then, let w0 be the minimizer of h(w). From the assumption
(4), we obtain

w0 = argmin
w

h(w) ∈ Argmin
w

Ψ0(w) . (26)

In addition, let {βt}t≥1 be a positive and non-decreasing
sequence where β0 = β1 > 0.

Then, we define two conjugate-type functions for each
t ≥ 0:

Ut(s) = max
w∈FD

{〈s,w −w0〉 −
t∑

τ=1

Ψτ (w)} , (27)

Vt(s) = max
w
{〈s,w−w0〉−

t∑
τ=1

Ψτ (w)− βth(w)} , (28)

where FD = {w ∈ domΨt|h(w) ≤ D2} and D is a
scalar with a positive value. Because βt > 0, function∑t
τ=1 Ψτ (w)+βth(w) is always strongly convex; therefore,

the maximizer of equation (28) is unique and we have
domUt = domVt = W ∗ for all t ≥ 0.

We can derive Lemma 1 in this setting.
Lemma 1: For any s ∈W ∗ and t ≥ 0, we have

Ut(s) ≤ Vt(s) + βtD
2 . (29)

Proof: See the proof of Lemma 9 in Xiao [3]. The procedure
of proof is exactly the same while the definitions of Ut and
Vt are different from those in Xiao.

2

Let πt(s) denote the unique maximizer of Vt(s), and then
we have the following equation for each t ≥ 0.

wt+1 = πt(−st) . (30)

Lemma 2: Function Vt is convex and differentiable, and
its gradient is given as:

∇Vt(s) = πt(s)−w0 . (31)

Moreover, the gradient is Lipschitz continuous with constant
1/βt.

Proof: This lemma follows from the characteristics of
convexity because function

∑t
τ=1 Ψτ (w) + βth(w) is

strongly convex with convexity parameter βt.

2

From Lemma 2, we can obtain the following inequality
for any vector a,b in W ∗.

Vt(a + b) ≤ Vt(a) + 〈b,∇Vt(a)〉+
1

2βt
‖b‖2∗ . (32)

Lemma 3: For each t ≥ 1, we have

Vt(−st) + Ψt+1(wt+1)

≤ Vt−1(−st) + (βt−1 − βt)h(wt+1) . (33)

Proof:

Vt−1(−st)

= max
w

{
〈−st,w −w0〉 −

t−1∑
τ=1

Ψτ (w)− βt−1h(w)

}

≤ 〈−st,wt+1 −w0〉 −
t−1∑
τ=1

Ψτ (wt+1)− βt−1h(wt+1)

= 〈−st,wt+1 −w0〉 −
t∑

τ=1

Ψτ (wt+1)− βth(wt+1)

+Ψt(wt+1) + (βt − βt−1)h(wt+1)

≤ Vt(−st) + Ψt+1(wt+1) + (βt − βt−1)h(wt+1) . (34)

From equation (30), we can use wt+1 = πt(−st). Also,
from the definition of Ψt+1(w), we can derive Ψt(w) ≤
Ψt+1(w) for any w. By using these properties, we can show
that the last inequality is satisfied.

2

We assume that h(wt+1) ≥ 0 and sequence {βt}t≥0 is
non-decreasing. Thus, we can derive the following function.

∀t ≥ 1 Vt(−st) + Ψt+1(wt+1) ≤ Vt−1(−st) . (35)

From these lemmas, we will prove Theorem 1. To mea-
sure the quality of the solutions, {wt}t≥1, we define gap
sequences {δt}t≥1 and use it for bounding regret R`+r(t).
For each t ≥ 1, the following inequality is satisfied as:

δt = max
w∈FD

{
t∑

τ=1

(〈gτ ,wτ −w〉+ Ψτ (wτ))−
t∑

τ=1

Ψτ (w)

}
≥ max

w∈FD

{
t∑

τ=1

(fτ (wτ)− fτ (w) + Ψτ (wτ))

−
t∑

τ=1

Ψτ (w)}

=

t∑
τ=1

(fτ (wτ) + Ψτ (wτ))

− min
w∈FD

{
t∑

τ=1

(fτ (w) + Ψτ (w))

}
=R`+r(t) . (36)

In addition, we can derive the upper bound for δt. To
achieve this, we reformalize gap sequences as:

δt =

t∑
τ=1

(〈gτ ,wτ −w0〉+ Ψτ (wτ))

+ max
w∈FD

{〈st,w0 −w〉 −
t∑

τ=1

Ψτ (w)}

=

t∑
τ=1

(〈gτ ,wτ −w0〉+ Ψτ (wτ)) + Ut(−st)

≤
t∑

τ=1

(〈gτ ,wτ −w0〉+ Ψτ (wτ))

+Vt(−st) + βtD
2 . (37)

Next, we will discuss the upper bound for the right-hand
side of inequality (37). For each τ ≥ 2,

Vτ (−sτ) + Ψτ+1(wτ+1)

≤ Vτ−1(−sτ)

= Vτ−1(−sτ−1 − gτ)

≤ Vτ−1(−sτ−1)

+〈−gτ ,∇Vτ−1(−sτ−1)〉+
‖gτ‖2∗
2βτ−1

= Vτ−1(−sτ−1)

+〈−gτ ,wτ −w0〉+
‖gτ‖2∗
2βτ−1

, (38)

where these four steps above used (35), (25), (32), and (31),
respectively. In summary, we can derive

〈gτ ,wτ −w0〉+ Ψτ+1(wτ+1)

≤ Vτ−1(−sτ−1)− Vτ (−sτ) +
‖gτ‖2∗
2βτ−1

, (39)

where τ ≥ 2.
Summing up the above inequalities from τ = 2 to t, and

noting that V0(−s0) = V0(0) = 0, we can derive
t∑

τ=1

(〈gτ ,wτ −w0〉+ Ψτ+1(wτ+1)) + Vt(−st)

≤ 1

2

t∑
τ=1

‖gτ‖2∗
βτ−1

. (40)

From the definitions of w0 = w1 and Ψt(w), note that
Ψt+1(wt+1) ≥ Ψ1(w1) for all t ≥ 1. Therefore, we add
non-positive term Ψ1(w1) − Ψt+1(wt+1) to the left-hand
side of inequality (40) and obtain the following inequality.

t∑
τ=1

(〈gτ ,wτ −w0〉+ Ψτ (wτ)) + Vt(−st)

≤ 1

2

t∑
τ=1

‖gτ‖2∗
βτ−1

. (41)

Combining (37) with (41), we can derive

R`+r(t) ≤ δt ≤ βtD2 +
1

2

t∑
τ=1

‖gτ‖2∗
βτ−1

. (42)

From the condition of ‖gτ‖∗ ≤ G for all τ and βt = γ
√
t,

we can re-formalize (42) as:

R`+r(t) ≤ δt ≤
(
γD2 +

G2

γ

)√
t , (43)

where we use inequality
t−1∑
τ=1

1√
τ
≤ 1 +

∫ t

1

1√
τ
dτ = 2

√
t− 1 . (44)

2

