2014/07/29 @AAAI Human-Computation and Crowdsourcing

Online and Stochastic Learning with a Human Cognitive Bias

Hidekazu Oiwa, Hiroshi Nakagawa
The University of Tokyo

General Setting

- Supervised learning to learn linear predictor $\mathbf{w} \in \mathcal{W}$
 - to predict label $y \in \{-1, 1\}$ from input $x \in \mathcal{X}$
 - e.g. Spam Mail Filtering
- Approach: Sequential Learning
 - Update predictor each time algorithm receives one labeled datum
 - Advantageous to large-scale learning: Do not store processed data
 - e.g. Online / Stochastic Learning

Human Cognitive Bias

- When applying sequential learning to practical applications, conventional framework causes problem
 - Sometimes algorithms misclassify data that were correctly classified in the past
 - User utility may be crucially deteriorated in this case
- Utility Maximization \neq Prediction Error Minimization
- We focus on sequential learning with human cognitive bias

Outline

- Endowment Effect as a human cognitive bias
 - Empirical analysis of this effect toward utility maximization
- New framework: Online and Stochastic Learning with a Human Cognitive Bias
- Proposed Algorithm: Endowment-induced OGD
 - Theoretical Analysis
 - Experimental Analysis

Endowment Effect [Thaler+80]

- One of the major human cognitive biases
 - Human tends to pay more money in event A
 - A. Prevent loss of already possessed object
 - B. Buy a new object
- Human utility changes even if the outcome is the same

In the notion of Sequential Learning ...

- Event A tends to decrease human utility
 - A. Misclassify data that we correctly predicted in the past
 - B. Misclassify unseen data
- Does this bias truly exist?

Experiment on Endowment Effect

- Verify endowment effect for human utility
- Utilize crowdsourcing system to assign tasks
 - Set up scene recognition systems
 - Assign several tasks to each worker

<u>Training</u>

Predicted label Restaurant

Receive pictures and predicted labels Send correct label if misclassified Receive new pictures and labels Evaluate learnability at a five scale

Test

Experiment on Endowment Effect

- We assign two type tasks to each user
 - (type-I) Same image does not appear in both phases
 - (type-II) Images are redisplayed. They are correctly classified in training phase but misclassified in test phase
- Misclassification rates are fixed in both types
- **Result**: Type-II has lower evaluation than type-I with 1% level of significance
 - Endowment effect badly affect worker's evaluation

	1	2	3	4	5	Average
type-I	2	3	15	73	7	3.80
type-II (duplicate)	2	11	26	54	7	3.53

Sequential Learning with Endowment Effect

• Define this human cognitive bias as divestiture loss

[Divestiture loss] = $\ell(\mathbf{w}; z) \mathbf{1}_{\text{prev}}$

- $z = (\mathbf{x}, y)$: Datum
- $\ell(\mathbf{w}; z)$: Loss function
- 1_{prev} : This function becomes 1 when sample z was correctly classified in the past; 0 otherwise.
- We add this term to objective functions
 - Online learning: [Regret] + γ [Divestiture loss Regret]
 - Stochastic Learning: [Expected loss] + γ [Divestiture loss]

Outline

- Endowment Effect as a human cognitive bias
 - Empirical analysis of this effect toward utility maximization
- New framework: Online and Stochastic Learning with a Human Cognitive Bias
- Proposed Algorithm: Endowment-induced OGD
 - Theoretical Analysis
 - Experimental Analysis

Endowment-induced OGD (E-OGD)

• We propose a new algorithm based on Online Gradient Descent (OGD)

$$\mathbf{w}_{t+1} = \Pi_{\mathcal{W}} \left(\mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t; z_t) \right)$$

where $\eta_t = \begin{cases} c(1+\gamma)/\sqrt{t} & \text{if } \hat{y}_t = y_t \\ c/\sqrt{t} & \text{if } \hat{y}_t \neq y_t \end{cases}$

- $\gamma \ge 0$: parameter to adjust importance of endowment effect
 - When $\gamma = 0$, E-OGD becomes normal OGD
- According to prediction result, adjust step width
 - When current datum is correctly classified, update parameters aggressively
 - This adjustment tend to prevent misclassification

Theoretical Analysis for Online Learning

- Regret Analysis
 - New objective: [Regret] + γ [Divestiture loss Regret]
 - We proved E-OGD achieves $O(\sqrt{T})$ upper bound
 - The same rate as OGD for normal setting [Zinkevich+03]

Theorem 3. Let $\mathbf{w}_1, \ldots, \mathbf{w}_{T+1}$ be derived according to *E*-OGD's update rule. Assume that for all \mathbf{w}_t , $\|\mathbf{w}_t\|_2 \leq R$ and $\|\nabla \ell_t(\mathbf{w}_t)\|_2 \leq G$ are satisfied. If loss functions are convex and we set a sequence of step widths $\eta_{1:T}$ as denoted above, the upper bound of regret is obtained by setting $c = \sqrt{2R}/G(1+\gamma)$ as follows:

 $\operatorname{Regret}(T) \le 2\sqrt{2}RG(1+\gamma)\sqrt{T}$. (9)

Theoretical Analysis for Stochastic Learning

- Expected Loss Analysis
 - New objective : [Expected loss] + γ [Divestiture loss]
 - E-OGD achieves $O(1/\sqrt{T})$ upper bound under some assumptions
 - The same rate as OGD for normal setting [Cesa-Bianchi+04]

Theorem 4. Assume that the conditions in Theorem 3 are satisfied and there is an integer t_p such that $r_t(z) = r_{t_p}(z)$ for any $t \ge t_p$. In this setting, the following formula is satisfied for any $\mathbf{u} \in \mathcal{W}$. $E_{\mathcal{D}^T} [E_{z \sim \mathcal{D}_P} [\ell(\bar{\mathbf{w}}; z)]] - E_{\mathcal{D}^T} [E_{z \sim \mathcal{D}_P} [\ell(\mathbf{u}; z)]]$ $\le \frac{\sqrt{2}RG(1+\gamma)}{(\sqrt{T} - (t_p+1)/\sqrt{T})/(2-\sqrt{t_p-1}/\sqrt{T})},$ (11) where $\bar{\mathbf{w}} = \sum_{t=t_p}^T \mathbf{w}_t/(T-t_p+1).$

Experiment

- Five binary classification tasks by one-pass stochastic learning
 - Loss function : Logistic loss
 - Learning rate : $\eta_t = \eta/\sqrt{t}$
 - Constant factor is set to minimize the objective
 - Trade-off parameter : $\gamma = 1$
 - Evaluation: [Expected loss] + γ [Divestiture loss]

Table 2: Dataset Specifications. T is the number of training data. S is test data size. N is the number of features.

		5120. 1, 15 th		or reaction of
-		T	S	N
-	news20	15,000	4,996	1,335,191
	rcv1	20,242	677,399	47,236
	algebra	8,407,752	510,302	20,216,830
	BtA	19,264,097	748,401	29,890,095
_	webspam-t	315,000	35,000	16,609,143

Experimental Result

	Loss Type	E-OGD	OGD
news20	Expected	$3.11 imes10^{-2}$	$3.85 imes10^{-2}$
	Divestiture	$\boldsymbol{1.37\times10^{-2}}$	2.20×10^{-2}
	Cumulative	$4.48 imes 10^{-2}$	6.05×10^{-2}
rcv1	Expected	$3.53 imes10^{-2}$	$3.80 imes 10^{-2}$
	Divestiture	$1.25 imes10^{-2}$	1.78×10^{-2}
	Cumulative	$4.79 imes 10^{-2}$	$5.58 imes 10^{-2}$
algebra	Expected	$3.35 imes 10^{-1}$	$3.13 imes10^{-1}$
	Divestiture	$\mathbf{5.89 imes 10^{-2}}$	1.02×10^{-1}
	Cumulative	$\mathbf{3.94 \times 10^{-1}}$	4.16×10^{-1}
	Expected	$3.29 imes 10^{-1}$	$3.11 imes10^{-1}$
BtA	Divestiture	$7.64 imes 10^{-2}$	1.17×10^{-1}
	Cumulative	$4.05 imes 10^{-1}$	4.28×10^{-1}
webspam-t	Expected	$\mathbf{2.62 imes 10^{-2}}$	$2.75 imes 10^{-2}$
	Divestiture	$8.29 imes 10^{-3}$	1.16×10^{-2}
	Cumulative	$3.45 imes \mathbf{10^{-2}}$	$3.91 imes 10^{-2}$

Conclusion

- Online and stochastic learning with a human cognitive bias
 - Verifying endowment effect through subjective experiment
 - Mathematical modeling of endowment effect
- E-OGD heals negative effect of divestiture loss
 - Theoretical analyses of E-OGD
 - E-OGD obtains better empirical performance

