Online and Stochastic Learning with a Human Cognitive Bias

Hidekazu Oiwa, Hiroshi Nakagawa
The University of Tokyo
General Setting

- Supervised learning to learn **linear predictor** $w \in \mathcal{W}$
 - to predict **label** $y \in \{-1, 1\}$ from **input** $x \in \mathcal{X}$
 - e.g. Spam Mail Filtering

- **Approach:** Sequential Learning
 - Update predictor each time algorithm receives one labeled datum
 - Advantageous to large-scale learning: Do **not** store processed data
 - e.g. Online / Stochastic Learning

![Diagram showing data and predictor over time]
Human Cognitive Bias

- When applying sequential learning to practical applications, conventional framework causes problem
- Sometimes algorithms misclassify data that were correctly classified in the past
- User utility may be crucially deteriorated in this case
- Utility Maximization ≠ Prediction Error Minimization
- We focus on sequential learning with human cognitive bias
Outline

• Endowment Effect as a human cognitive bias

• Empirical analysis of this effect toward utility maximization

• New framework: Online and Stochastic Learning with a Human Cognitive Bias

• Proposed Algorithm: Endowment-induced OGD

• Theoretical Analysis

• Experimental Analysis
Endowment Effect [Thaler+ 80]

- One of the major human cognitive biases
 - Human tends to pay more money in event A
 - A. Prevent loss of already possessed object
 - B. Buy a new object
 - Human utility changes even if the outcome is the same
In the notion of Sequential Learning ...

- Event A tends to decrease human utility
 - A. Misclassify data that we correctly predicted in the past
 - B. Misclassify unseen data
- Does this bias truly exist?
Experiment on Endowment Effect

- Verify endowment effect for human utility
- Utilize crowdsourcing system to assign tasks
- Set up scene recognition systems
- Assign several tasks to each worker

Training

Receive pictures and predicted labels
Send correct label if misclassified

Test

Receive new pictures and labels
Evaluate learnability at a five scale

Predicted label
Restaurant

Predicted label
Restaurant
Experiment on Endowment Effect

- We assign two type tasks to each user
 - (type-I) Same image does not appear in both phases
 - (type-II) Images are redisplayed. They are correctly classified in training phase but misclassified in test phase
- Misclassification rates are fixed in both types
- **Result:** Type-II has lower evaluation than type-I with 1% level of significance
- Endowment effect badly affect worker’s evaluation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-I</td>
<td>2</td>
<td>3</td>
<td>15</td>
<td>73</td>
<td>7</td>
<td>3.80</td>
</tr>
<tr>
<td>type-II (duplicate)</td>
<td>2</td>
<td>11</td>
<td>26</td>
<td>54</td>
<td>7</td>
<td>3.53</td>
</tr>
</tbody>
</table>
Sequential Learning with Endowment Effect

• Define this human cognitive bias as divestiture loss

\[
\text{[Divestiture loss]} = \ell(w; z)1_{\text{prev}}
\]

• \(z = (x, y) \): Datum

• \(\ell(w; z) \): Loss function

• \(1_{\text{prev}} \): This function becomes 1 when sample \(z \) was correctly classified in the past; 0 otherwise.

• We add this term to objective functions

 • Online learning: [Regret] + \(\gamma \)[Divestiture loss Regret]

 • Stochastic Learning: [Expected loss] + \(\gamma \)[Divestiture loss]
• Endowment Effect as a human cognitive bias
 • Empirical analysis of this effect toward utility maximization
• New framework: Online and Stochastic Learning with a Human Cognitive Bias
• Proposed Algorithm: Endowment-induced OGD
 • Theoretical Analysis
 • Experimental Analysis
Endowment-induced OGD (E-OGD)

- We propose a new algorithm based on Online Gradient Descent (OGD):

\[
\mathbf{w}_{t+1} = \Pi_{\mathcal{W}} \left(\mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t; z_t) \right)
\]

where \(\eta_t = \begin{cases}
\frac{c(1 + \gamma)}{\sqrt{t}} & \text{if } \hat{y}_t = y_t \\
\frac{c}{\sqrt{t}} & \text{if } \hat{y}_t \neq y_t
\end{cases} \)

- \(\gamma \geq 0 \) : parameter to adjust importance of endowment effect
- When \(\gamma = 0 \), E-OGD becomes normal OGD
- According to prediction result, adjust step width
- When current datum is correctly classified, update parameters aggressively
- This adjustment tends to prevent misclassification
Theoretical Analysis for Online Learning

- Regret Analysis
- New objective: \([\text{Regret}] + \gamma [\text{Divestiture loss Regret}]\)
- We proved E-OGD achieves \(O(\sqrt{T})\) upper bound
- The same rate as OGD for normal setting [Zinkevich+ 03]

Theorem 3. Let \(w_1, \ldots, w_{T+1}\) be derived according to E-OGD’s update rule. Assume that for all \(w_t\), \(\|w_t\|_2 \leq R\) and \(\|\nabla \ell_t(w_t)\|_2 \leq G\) are satisfied. If loss functions are convex and we set a sequence of step widths \(\eta_1:T\) as denoted above, the upper bound of regret is obtained by setting \(c = \sqrt{2R/G(1 + \gamma)}\) as follows:

\[
\text{Regret}(T) \leq 2\sqrt{2RG(1 + \gamma)}\sqrt{T}.
\]
Theoretical Analysis for Stochastic Learning

- Expected Loss Analysis
 - New objective: [Expected loss] + \(\gamma \) [Divestiture loss]
 - E-OGD achieves \(O\left(\frac{1}{\sqrt{T}}\right) \) upper bound under some assumptions
 - The same rate as OGD for normal setting [Cesa-Bianchi+ 04]

Theorem 4. Assume that the conditions in Theorem 3 are satisfied and there is an integer \(t_p \) such that \(r_t(z) = r_{t_p}(z) \) for any \(t \geq t_p \). In this setting, the following formula is satisfied for any \(u \in \mathcal{W} \).

\[
E_{D_T} \left[E_{z \sim \mathcal{D}_P} [\ell(\bar{w}; z)] \right] - E_{D_T} \left[E_{z \sim \mathcal{D}_P} [\ell(u; z)] \right]
\leq \frac{\sqrt{2RG}(1 + \gamma)}{(\sqrt{T} - (t_p + 1)/\sqrt{T})/(2 - \sqrt{t_p - 1}/\sqrt{T})},
\]

where \(\bar{w} = \sum_{t = t_p}^{T} w_t / (T - t_p + 1) \).
Experiment

- Five binary classification tasks by one-pass stochastic learning
- Loss function: Logistic loss
- Learning rate: $\eta_t = \eta / \sqrt{t}$
- Constant factor is set to minimize the objective
- Trade-off parameter: $\gamma = 1$
- Evaluation: $[\text{Expected loss}] + \gamma [\text{Divestiture loss}]$

Table 2: Dataset Specifications. T is the number of training data, S is test data size, N is the number of features.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>T</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>news20</td>
<td>15,000</td>
<td>4,996</td>
<td>1,335,191</td>
</tr>
<tr>
<td>rcv1</td>
<td>20,242</td>
<td>677,399</td>
<td>47,236</td>
</tr>
<tr>
<td>algebra</td>
<td>8,407,752</td>
<td>510,302</td>
<td>20,216,830</td>
</tr>
<tr>
<td>BtA</td>
<td>19,264,097</td>
<td>748,401</td>
<td>29,890,095</td>
</tr>
<tr>
<td>webspm-t</td>
<td>315,000</td>
<td>35,000</td>
<td>16,609,143</td>
</tr>
</tbody>
</table>
Experimental Result

<table>
<thead>
<tr>
<th></th>
<th>Loss Type</th>
<th>E-OGD</th>
<th>OGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>news20</td>
<td>Expected</td>
<td>3.11×10^{-2}</td>
<td>3.85×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Divestiture</td>
<td>1.37×10^{-2}</td>
<td>2.20×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Cumulative</td>
<td>4.48×10^{-2}</td>
<td>6.05×10^{-2}</td>
</tr>
<tr>
<td>rcv1</td>
<td>Expected</td>
<td>3.53×10^{-2}</td>
<td>3.80×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Divestiture</td>
<td>1.25×10^{-2}</td>
<td>1.78×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Cumulative</td>
<td>4.79×10^{-2}</td>
<td>5.58×10^{-2}</td>
</tr>
<tr>
<td>algebra</td>
<td>Expected</td>
<td>3.35×10^{-1}</td>
<td>3.13×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>Divestiture</td>
<td>5.89×10^{-2}</td>
<td>1.02×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>Cumulative</td>
<td>3.94×10^{-1}</td>
<td>4.16×10^{-1}</td>
</tr>
<tr>
<td>BtA</td>
<td>Expected</td>
<td>3.29×10^{-1}</td>
<td>3.11×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>Divestiture</td>
<td>7.64×10^{-2}</td>
<td>1.17×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>Cumulative</td>
<td>4.05×10^{-1}</td>
<td>4.28×10^{-1}</td>
</tr>
<tr>
<td>webspam-t</td>
<td>Expected</td>
<td>2.62×10^{-2}</td>
<td>2.75×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Divestiture</td>
<td>8.29×10^{-3}</td>
<td>1.16×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>Cumulative</td>
<td>3.45×10^{-2}</td>
<td>3.91×10^{-2}</td>
</tr>
</tbody>
</table>
Conclusion

- Online and stochastic learning with a human cognitive bias
- Verifying endowment effect through subjective experiment
- Mathematical modeling of endowment effect
- E-OGD heals negative effect of divestiture loss
- Theoretical analyses of E-OGD
- E-OGD obtains better empirical performance