

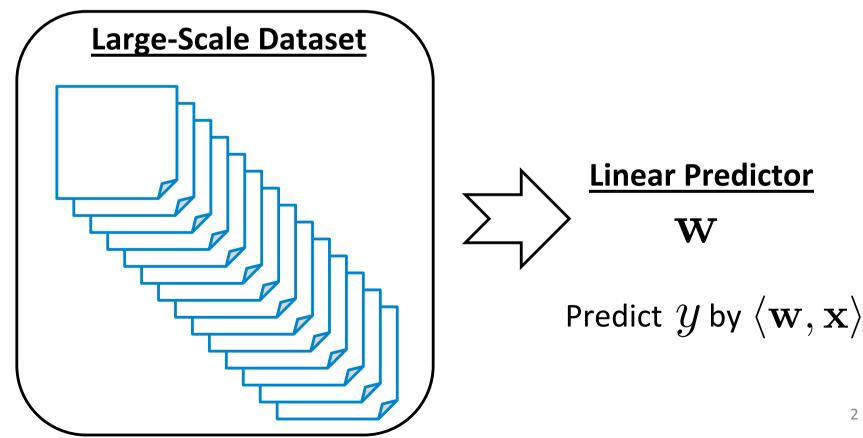
Healing Truncation Bias: Self-weighted Truncation framework for Dual Averaging

* Hidekazu Oiwa Shin Matsushima Hiroshi Nakagawa

The University of Tokyo

Objective: Large-Scale Learning

- Learn parameters w from large-scale dataset
 - Predict Output y from Input x by $\langle x, x \rangle$
 - Assume data size / dim. are very large



Optimization Problem

Empirical Risk Minimization

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathcal{W}}{\operatorname{argmin}} \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

Convex Loss function

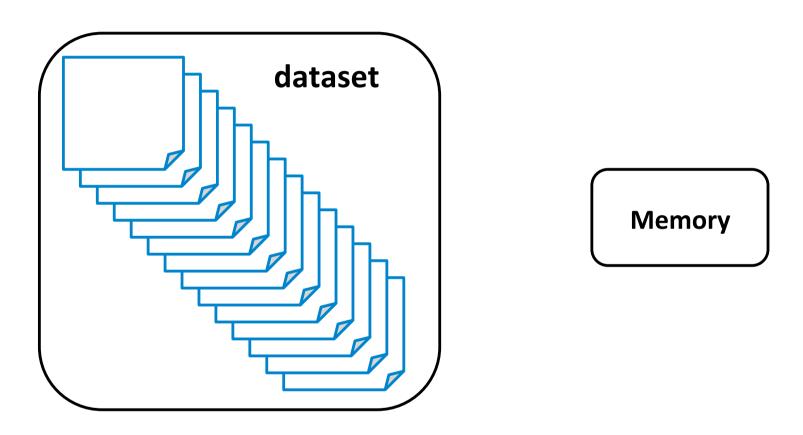
$$\ell_t(\cdot): \mathbf{W} \to \Re_+$$

Evaluate predictability

Ex. Hinge Loss
$$\ell_t(\mathbf{w}) = [1 - y_t \langle \mathbf{x}_t, \mathbf{w} \rangle]_+$$
 Log-Loss
$$\ell_t(\mathbf{w}) = \log(1 + e^{-y_t \langle \mathbf{x}_t, \mathbf{w} \rangle})$$

2 Challenges in large-scale learning

Large-Scale Learning: Challenge 1



Data Size >>> Memory Size

Data loading time may be dominant in classical optimization methods [Yu+, 2010]

Large-Scale Learning: Challenge 2

$$\mathbf{w} = \{2.5, 1.2, -1.1, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}$$

$$\langle \mathbf{w}, \mathbf{x}_i \rangle$$

$$\langle \mathbf{w}, \mathbf{x}_i \rangle$$
 Dimension is large
$$\mathbf{x}_i = \{0, 2, 1, \ldots, \ldots, \ldots, \ldots, \ldots\}$$

Inner-product calculation becomes very costly

 $\langle \mathbf{w}, \mathbf{x} \rangle$ \langle Make inner-product faster!

So..., Sparse Online Learning!

 Sparse Online Learning is a combination of Online Learning and L1-Regularization

Online Learning

Smaller dataloading count

Robust for data redundancy

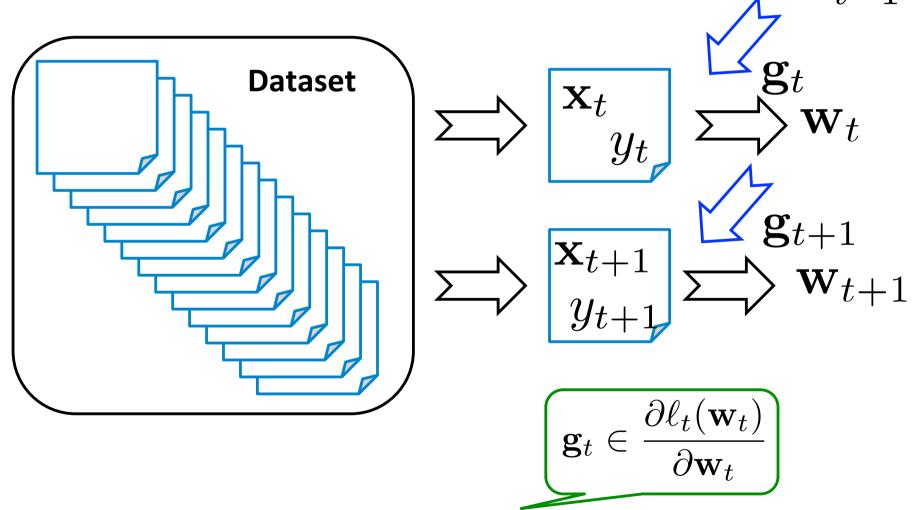
L1-Regularization

Faster innerproduct

Robust for feature redundancy

Online Learning

Process one datum at each round



First-order derivative of convex loss functions is used

L1-regularization

- Sparsify weight vector
 - Component is truncated if not helpful for prediction
- Formulation

$$\Phi(\mathbf{w}) = \lambda \|\mathbf{w}\|_1$$
 where $\,\lambda\,$: parameter interpolating losses and L1

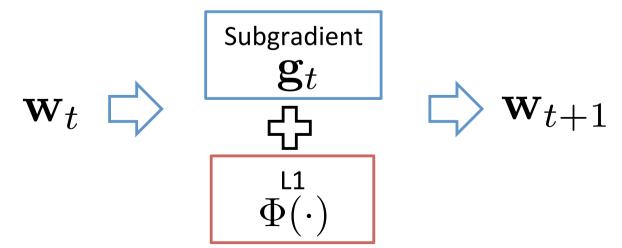
$$\mathbf{w} = (2.5, 1.2, -1.1, 0.8, 0.1, \dots, \dots, \dots, \dots)$$
 $\mathbf{w} = (1.5, 0.2, -0.1, 0.0, 0.0, \dots, \dots, \dots, \dots)$

Truncated components are not used => Faster Prediction and Reduce redundant features

Previous Work Sparse Online Learning

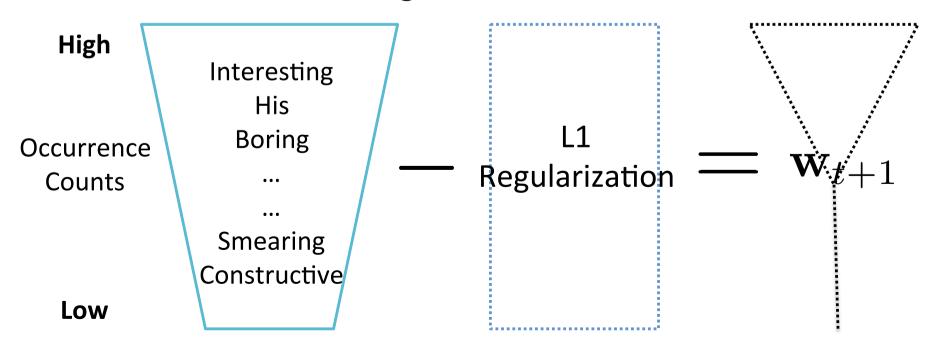
- RDA [Xiao, 2009]
- COMID [Duchi+, 2010]
- FTPRL [McMahan+, 2010]

RDA is a state-of-the-art framework.
(In our experiments, RDA outperforms other methods)



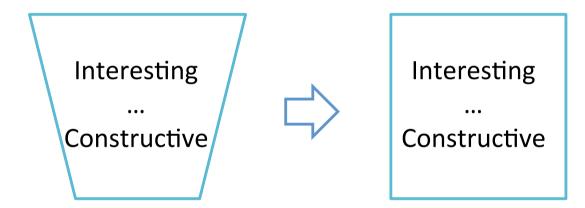
Truncation Bias

- Heterogeneity among features makes bias
 - Truncation ignores feature info.
 - Crucial features are truncated if
 - low-frequency
 - Small value range



Truncation Bias in Online Learning make the problem more complex

- Truncation Bias in Batch Learning
 - Scaling each feature by scanning all data once

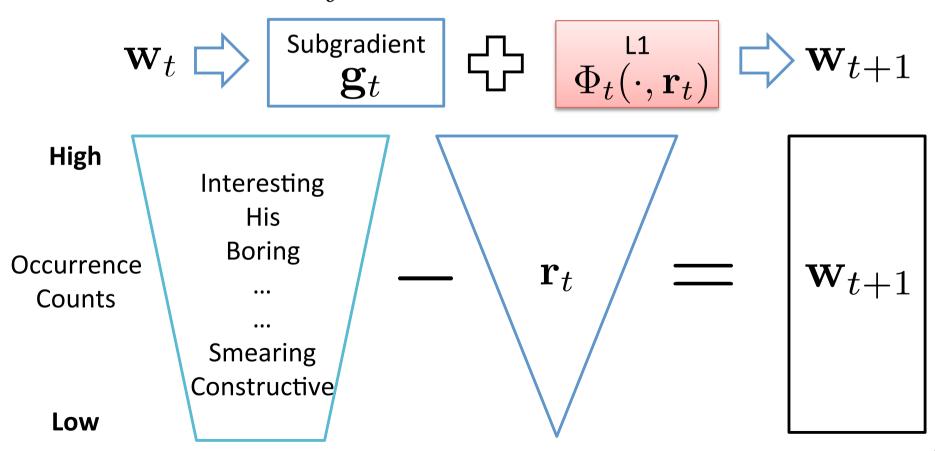


- Truncation Bias in Online Learning
 - Cannot scan all data, cannot count occurrences of features
 - Dynamic scaling leads to inconsistency prediction
 - If weight vector and input are the same, $\langle \mathbf{w}, g_i(\mathbf{x}) \rangle \neq \langle \mathbf{w}, g_j(\mathbf{x}) \rangle$

Our Approach [1/2]

Self-weighted Truncation framework for RDA

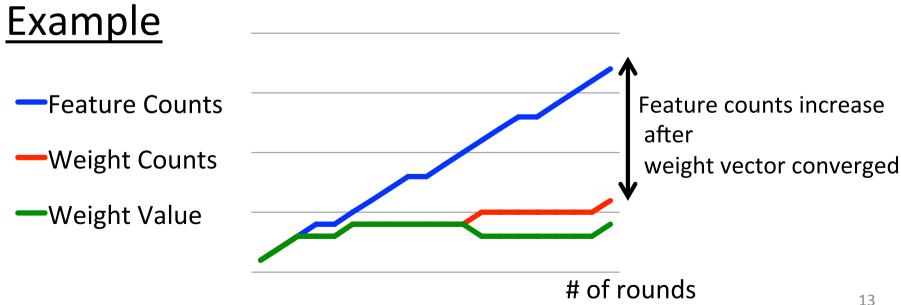
- Introduce self-weighted vector ${f r}_t$
 - Integrate \mathbf{r}_t for healing truncation bias



Our Approach [2/2]

Self-weighted Truncation framework for RDA

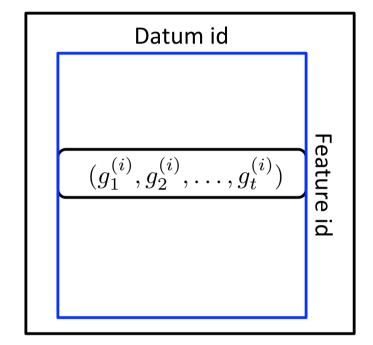
- \mathbf{r}_t is based on Subgradient not original feature
 - Collecting feature info. is not good approach!
 - Value range of \mathbf{w}_t depends more on update frequency than on feature counts



Self-weighted Truncation framework [1/2]

Define
$$\mathbf{r}_t$$

$$r_t^{(i)} = r_{t,q}^{(i)} = \sqrt{\sum_{ au=1}^t |g_ au^{(i)}|^q}$$
 where $q>0$



Update frequency of feature i is low

Few number of nonzero components

$$(g_1^{(i)}, g_2^{(i)}, \dots, g_t^{(i)})$$

 $r_t^{(i)}$ becomes small

Computational complexity of updating $\mathbf{r}_t: \mathit{O}(ext{ iny Nonzero elements of } \mathbf{g}_t)_{_{_{1}}}$

Self-weighted Truncation framework [2/2]

Reformulate L1-regularization

$$\Phi_{t}(\mathbf{w}_{t}) = \lambda \|\mathbf{R}_{t}\mathbf{w}_{t}\|_{1}$$

$$s.t. \quad \mathbf{R}_{t} = \begin{bmatrix} r_{t}^{(1)} & 0 & \cdots & 0 \\ 0 & r_{t}^{(2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{t}^{(d)} \end{bmatrix}$$

Adaptive Truncation via Update Frequency

Algorithm: Extension to RDA (STDA)

$$w_{t+1}^{(i)} = \begin{cases} 0 & v_t^{(i)} \le 0 \\ -\operatorname{sign}(\bar{g}_t^{(i)}) \frac{t v_t^{(i)}}{\beta_t} & \text{otherwise} \end{cases} \quad v_t^{(i)} = |\bar{g}_t^{(i)}| - \lambda \bar{r}_t^{(i)}$$

Theoretical Analysis

	STDA	RDA
Computational Complexity	O(d)	O(d)
Regret Upper Bound	$O(\sqrt{T})$	$O(\sqrt{T})$

d:# of non-zero elems.

T : # of data

$$\text{Regret}: \sum_{t=1}^{T} \left(\ell_t(\mathbf{w}_t) + \Phi(\mathbf{w}_t) \right) - \inf_{\mathbf{w}} \left(\sum_{t=1}^{T} \left(\ell_t(\mathbf{w}) + \Phi(\mathbf{w}) \right) \right)$$

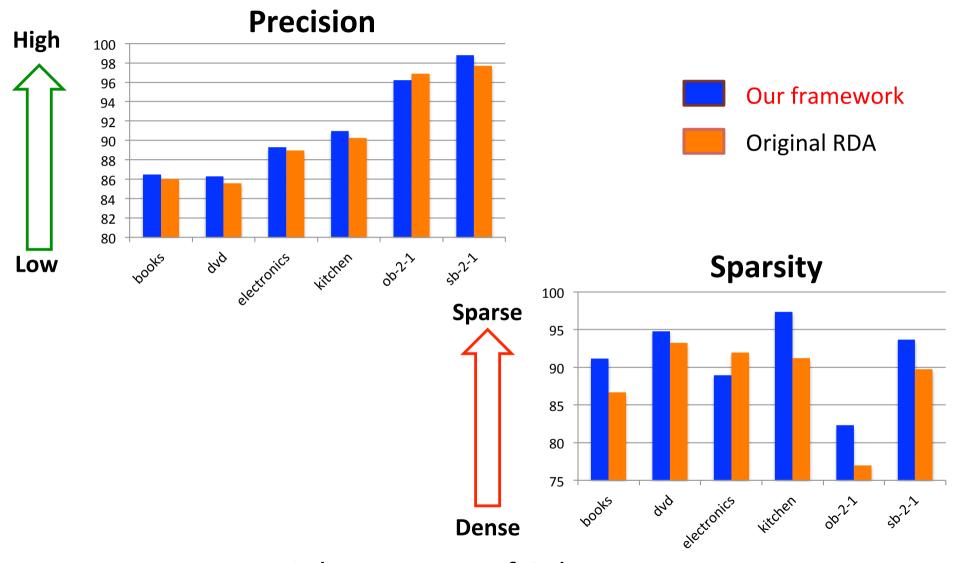
Experiments Overview

- Classification in 6 datasets
 - Comparison1 : vs. Original RDA
 - Comparison2 : vs. Self-weighted based on feature
 - Self-weighted parameter q is set to ∞
 - If $q \ge 2$, obtained almost similar results

of iteration : 20 10-fold CV to set λ

	# of data	# of features	task
books	4,465	332,440	Sentiment
dvd	3,586	282,900	Sentiment
electronics	5,681	235,796	Sentiment
kitchen	5,945	205,665	Sentiment
ob-2-1	1,000	5,942	News
sb-2-1	1,000	6,276	News

Comparison 1 : vs. Original RDA



In 4 datasets out of 6 datasets,
Our framework obtain more precise model with more sparsity 18

Comparison of Important features

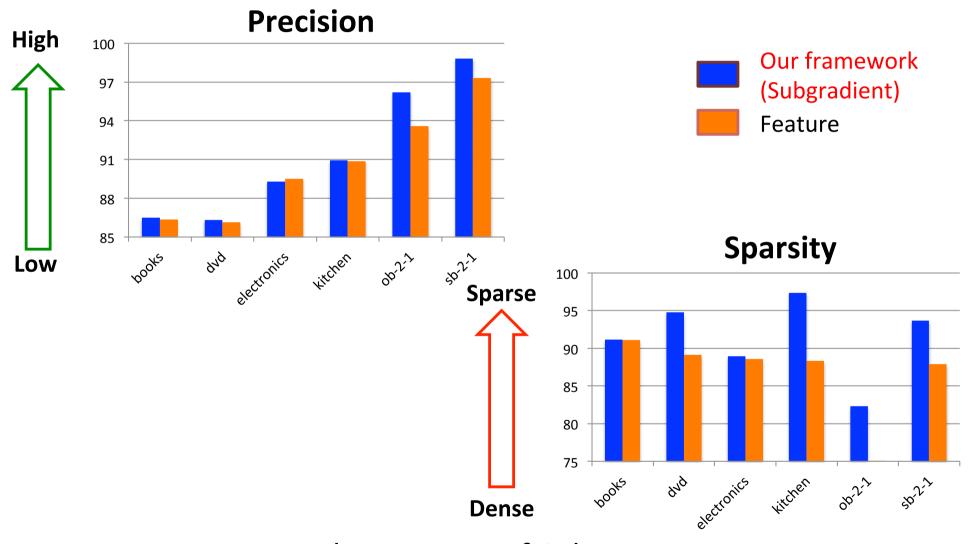
Dataset: books (Sentiment Analysis)

<u>Our framework</u>	Original RDA	
"some interesting" (117)	"his" (1491)	
"a constructive" (101)	"more" (877)	
"be successful" (64)	"time" (1161)	
"was blatantly" (29)	"almost" (376)	
"smearing" (30)	"say" (2407)	

(): Occurrence Counts

Our framework obtain helpful but rare features that conventional algorithms cannot retain

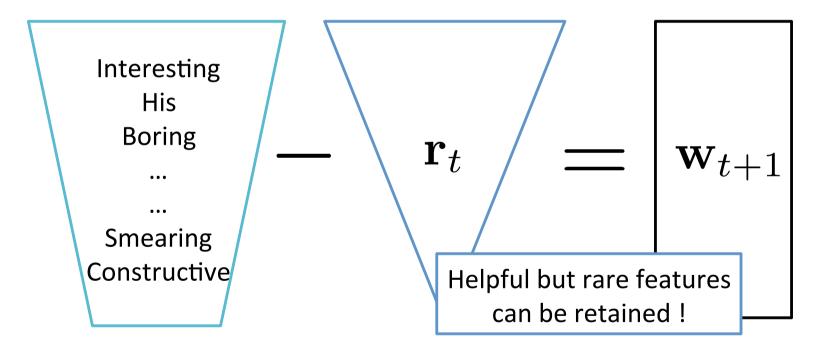
Comparison 2 vs. feature-based framework



In 5 datasets out of 6 datasets,
Our framework obtain more precise model with more sparsity 20

Conclusion

- Propose Self-weighted Truncation framework
 - Healing truncation bias on the fly by Subgradients



- Guarantee theoretical bound
- Show experimental results
- Other experiments and analyses are in our paper!