

# Healing Truncation Bias: Self-weighted Truncation framework for Dual Averaging

\* Hidekazu Oiwa Shin Matsushima Hiroshi Nakagawa

The University of Tokyo

# Objective: Large-Scale Learning

- Learn parameters w from large-scale dataset
  - Predict Output y from Input x by  $\langle x, x \rangle$
  - Assume data size / dim. are very large



### **Optimization Problem**

#### **Empirical Risk Minimization**

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathcal{W}}{\operatorname{argmin}} \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

#### **Convex Loss function**

$$\ell_t(\cdot): \mathbf{W} \to \Re_+$$

**Evaluate predictability** 

Ex. Hinge Loss 
$$\ell_t(\mathbf{w}) = [1 - y_t \langle \mathbf{x}_t, \mathbf{w} \rangle]_+$$
 Log-Loss 
$$\ell_t(\mathbf{w}) = \log(1 + e^{-y_t \langle \mathbf{x}_t, \mathbf{w} \rangle})$$

2 Challenges in large-scale learning

# Large-Scale Learning: Challenge 1



Data Size >>> Memory Size

Data loading time may be dominant in classical optimization methods [Yu+, 2010]

# Large-Scale Learning: Challenge 2

$$\mathbf{w} = \{2.5, 1.2, -1.1, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots\}$$
 
$$\langle \mathbf{w}, \mathbf{x}_i \rangle$$
 
$$\langle \mathbf{w}, \mathbf{x}_i \rangle$$
 Dimension is large 
$$\mathbf{x}_i = \{0, 2, 1, \ldots, \ldots, \ldots, \ldots, \ldots\}$$

Inner-product calculation becomes very costly

 $\langle \mathbf{w}, \mathbf{x} \rangle$   $\langle$  Make inner-product faster!

### So..., Sparse Online Learning!

 Sparse Online Learning is a combination of Online Learning and L1-Regularization

### Online Learning

Smaller dataloading count

Robust for data redundancy

### L1-Regularization

Faster innerproduct

Robust for feature redundancy

# Online Learning

Process one datum at each round



First-order derivative of convex loss functions is used

# L1-regularization

- Sparsify weight vector
  - Component is truncated if not helpful for prediction
- Formulation

$$\Phi(\mathbf{w}) = \lambda \|\mathbf{w}\|_1$$
 where  $\,\lambda\,$ : parameter interpolating losses and L1

$$\mathbf{w} = (2.5, 1.2, -1.1, 0.8, 0.1, \dots, \dots, \dots, \dots)$$
 $\mathbf{w} = (1.5, 0.2, -0.1, 0.0, 0.0, \dots, \dots, \dots, \dots)$ 

Truncated components are not used => Faster Prediction and Reduce redundant features

# Previous Work <a href="Sparse Online Learning">Sparse Online Learning</a>

- RDA [Xiao, 2009]
- COMID [Duchi+, 2010]
- FTPRL [McMahan+, 2010]

RDA is a state-of-the-art framework.
(In our experiments, RDA outperforms other methods)



### **Truncation Bias**

- Heterogeneity among features makes bias
  - Truncation ignores feature info.
  - Crucial features are truncated if
    - low-frequency
    - Small value range



# Truncation Bias in Online Learning make the problem more complex

- Truncation Bias in Batch Learning
  - Scaling each feature by scanning all data once



- Truncation Bias in Online Learning
  - Cannot scan all data, cannot count occurrences of features
  - Dynamic scaling leads to inconsistency prediction
    - If weight vector and input are the same,  $\langle \mathbf{w}, g_i(\mathbf{x}) \rangle \neq \langle \mathbf{w}, g_j(\mathbf{x}) \rangle$

# Our Approach [1/2]

Self-weighted Truncation framework for RDA

- Introduce self-weighted vector  ${f r}_t$ 
  - Integrate  $\mathbf{r}_t$  for healing truncation bias



# Our Approach [2/2]

Self-weighted Truncation framework for RDA

- $\mathbf{r}_t$  is based on Subgradient not original feature
  - Collecting feature info. is not good approach!
  - Value range of  $\mathbf{w}_t$  depends more on update frequency than on feature counts



# Self-weighted Truncation framework [1/2]

Define 
$$\mathbf{r}_t$$

$$r_t^{(i)} = r_{t,q}^{(i)} = \sqrt{\sum_{ au=1}^t |g_ au^{(i)}|^q}$$
 where  $q>0$ 



Update frequency of feature i is low



Few number of nonzero components

$$(g_1^{(i)}, g_2^{(i)}, \dots, g_t^{(i)})$$



 $r_t^{(i)}$  becomes small

Computational complexity of updating  $\mathbf{r}_t: \mathit{O}( ext{ iny Nonzero elements of } \mathbf{g}_t)_{_{_{1}}}$ 

### Self-weighted Truncation framework [2/2]

#### Reformulate L1-regularization

$$\Phi_{t}(\mathbf{w}_{t}) = \lambda \|\mathbf{R}_{t}\mathbf{w}_{t}\|_{1}$$

$$s.t. \quad \mathbf{R}_{t} = \begin{bmatrix} r_{t}^{(1)} & 0 & \cdots & 0 \\ 0 & r_{t}^{(2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{t}^{(d)} \end{bmatrix}$$

Adaptive Truncation via Update Frequency

#### Algorithm: Extension to RDA (STDA)

$$w_{t+1}^{(i)} = \begin{cases} 0 & v_t^{(i)} \le 0 \\ -\operatorname{sign}(\bar{g}_t^{(i)}) \frac{t v_t^{(i)}}{\beta_t} & \text{otherwise} \end{cases} \quad v_t^{(i)} = |\bar{g}_t^{(i)}| - \lambda \bar{r}_t^{(i)}$$

# Theoretical Analysis

|                          | STDA          | RDA           |
|--------------------------|---------------|---------------|
| Computational Complexity | O(d)          | O(d)          |
| Regret Upper Bound       | $O(\sqrt{T})$ | $O(\sqrt{T})$ |

d:# of non-zero elems.

T : # of data

$$\text{Regret}: \sum_{t=1}^{T} \left( \ell_t(\mathbf{w}_t) + \Phi(\mathbf{w}_t) \right) - \inf_{\mathbf{w}} \left( \sum_{t=1}^{T} \left( \ell_t(\mathbf{w}) + \Phi(\mathbf{w}) \right) \right)$$

## **Experiments Overview**

- Classification in 6 datasets
  - Comparison1 : vs. Original RDA
  - Comparison2 : vs. Self-weighted based on feature
  - Self-weighted parameter q is set to  $\infty$ 
    - If  $q \ge 2$ , obtained almost similar results

# of iteration : 20 10-fold CV to set  $\lambda$ 

|             | # of data | # of features | task      |
|-------------|-----------|---------------|-----------|
| books       | 4,465     | 332,440       | Sentiment |
| dvd         | 3,586     | 282,900       | Sentiment |
| electronics | 5,681     | 235,796       | Sentiment |
| kitchen     | 5,945     | 205,665       | Sentiment |
| ob-2-1      | 1,000     | 5,942         | News      |
| sb-2-1      | 1,000     | 6,276         | News      |

# Comparison 1 : vs. Original RDA



In 4 datasets out of 6 datasets,
Our framework obtain more precise model with more sparsity 18

### Comparison of Important features

Dataset: books (Sentiment Analysis)

| <u>Our framework</u>     | Original RDA   |  |
|--------------------------|----------------|--|
| "some interesting" (117) | "his" (1491)   |  |
| "a constructive" (101)   | "more" (877)   |  |
| "be successful" (64)     | "time" (1161)  |  |
| "was blatantly" (29)     | "almost" (376) |  |
| "smearing" (30)          | "say" (2407)   |  |

(): Occurrence Counts

Our framework obtain helpful but rare features that conventional algorithms cannot retain

# Comparison 2 vs. feature-based framework



In 5 datasets out of 6 datasets,
Our framework obtain more precise model with more sparsity 20

### Conclusion

- Propose Self-weighted Truncation framework
  - Healing truncation bias on the fly by Subgradients



- Guarantee theoretical bound
- Show experimental results
- Other experiments and analyses are in our paper!